(* Title: HOL/Ord.ML
ID: $Id$
Author: Tobias Nipkow, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
The type class for ordered types
*)
(*Tell Blast_tac about overloading of < and <= to reduce the risk of
its applying a rule for the wrong type*)
Blast.overloaded ("op <", domain_type);
Blast.overloaded ("op <=", domain_type);
(** mono **)
val [prem] = Goalw [mono_def]
"[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)";
by (REPEAT (ares_tac [allI, impI, prem] 1));
qed "monoI";
Goalw [mono_def] "[| mono(f); A <= B |] ==> f(A) <= f(B)";
by (Fast_tac 1);
qed "monoD";
section "Orders";
(** Reflexivity **)
Addsimps [order_refl];
(*This form is useful with the classical reasoner*)
Goal "!!x::'a::order. x = y ==> x <= y";
by (etac ssubst 1);
by (rtac order_refl 1);
qed "order_eq_refl";
Goal "~ x < (x::'a::order)";
by (simp_tac (simpset() addsimps [order_less_le]) 1);
qed "order_less_irrefl";
Addsimps [order_less_irrefl];
Goal "(x::'a::order) <= y = (x < y | x = y)";
by (simp_tac (simpset() addsimps [order_less_le]) 1);
(*NOT suitable for AddIffs, since it can cause PROOF FAILED*)
by (blast_tac (claset() addSIs [order_refl]) 1);
qed "order_le_less";
(** Asymmetry **)
Goal "(x::'a::order) < y ==> ~ (y<x)";
by (asm_full_simp_tac (simpset() addsimps [order_less_le, order_antisym]) 1);
qed "order_less_not_sym";
(* [| n<m; ~P ==> m<n |] ==> P *)
bind_thm ("order_less_asym", order_less_not_sym RS swap);
(** Useful for simplification, but too risky to include by default. **)
Goal "(x::'a::order) < y ==> (~ y < x) = True";
by (blast_tac (claset() addEs [order_less_asym]) 1);
qed "order_less_imp_not_less";
Goal "(x::'a::order) < y ==> (y < x --> P) = True";
by (blast_tac (claset() addEs [order_less_asym]) 1);
qed "order_less_imp_triv";
Goal "(x::'a::order) < y ==> (x = y) = False";
by Auto_tac;
qed "order_less_imp_not_eq";
Goal "(x::'a::order) < y ==> (y = x) = False";
by Auto_tac;
qed "order_less_imp_not_eq2";
(** min **)
val prems = Goalw [min_def] "(!!x. least <= x) ==> min least x = least";
by (simp_tac (simpset() addsimps prems) 1);
qed "min_leastL";
val prems = Goalw [min_def]
"(!!x::'a::order. least <= x) ==> min x least = least";
by (cut_facts_tac prems 1);
by (Asm_simp_tac 1);
by (blast_tac (claset() addIs [order_antisym]) 1);
qed "min_leastR";
section "Linear/Total Orders";
Goal "!!x::'a::linorder. x<y | x=y | y<x";
by (simp_tac (simpset() addsimps [order_less_le]) 1);
by (cut_facts_tac [linorder_linear] 1);
by (Blast_tac 1);
qed "linorder_less_linear";
Goalw [max_def] "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)";
by (Simp_tac 1);
by (cut_facts_tac [linorder_linear] 1);
by (blast_tac (claset() addIs [order_trans]) 1);
qed "le_max_iff_disj";
Goalw [max_def] "!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)";
by (Simp_tac 1);
by (cut_facts_tac [linorder_linear] 1);
by (blast_tac (claset() addIs [order_trans]) 1);
qed "max_le_iff_conj";
Goalw [min_def] "!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)";
by (Simp_tac 1);
by (cut_facts_tac [linorder_linear] 1);
by (blast_tac (claset() addIs [order_trans]) 1);
qed "le_min_iff_conj";
Goalw [min_def] "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)";
by (Simp_tac 1);
by (cut_facts_tac [linorder_linear] 1);
by (blast_tac (claset() addIs [order_trans]) 1);
qed "min_le_iff_disj";