(* Title: FOL/FOL.thy
ID: $Id$
Author: Lawrence C Paulson and Markus Wenzel
*)
header {* Classical first-order logic *}
theory FOL
imports IFOL
uses
"~~/src/Provers/classical.ML"
"~~/src/Provers/blast.ML"
"~~/src/Provers/clasimp.ML"
"~~/src/Tools/induct.ML"
("cladata.ML")
("blastdata.ML")
("simpdata.ML")
begin
subsection {* The classical axiom *}
axioms
classical: "(~P ==> P) ==> P"
subsection {* Lemmas and proof tools *}
lemma ccontr: "(\<not> P \<Longrightarrow> False) \<Longrightarrow> P"
by (erule FalseE [THEN classical])
(*** Classical introduction rules for | and EX ***)
lemma disjCI: "(~Q ==> P) ==> P|Q"
apply (rule classical)
apply (assumption | erule meta_mp | rule disjI1 notI)+
apply (erule notE disjI2)+
done
(*introduction rule involving only EX*)
lemma ex_classical:
assumes r: "~(EX x. P(x)) ==> P(a)"
shows "EX x. P(x)"
apply (rule classical)
apply (rule exI, erule r)
done
(*version of above, simplifying ~EX to ALL~ *)
lemma exCI:
assumes r: "ALL x. ~P(x) ==> P(a)"
shows "EX x. P(x)"
apply (rule ex_classical)
apply (rule notI [THEN allI, THEN r])
apply (erule notE)
apply (erule exI)
done
lemma excluded_middle: "~P | P"
apply (rule disjCI)
apply assumption
done
(*For disjunctive case analysis*)
ML {*
fun excluded_middle_tac sP =
res_inst_tac [("Q",sP)] (@{thm excluded_middle} RS @{thm disjE})
*}
lemma case_split_thm:
assumes r1: "P ==> Q"
and r2: "~P ==> Q"
shows Q
apply (rule excluded_middle [THEN disjE])
apply (erule r2)
apply (erule r1)
done
lemmas case_split = case_split_thm [case_names True False]
(*HOL's more natural case analysis tactic*)
ML {*
fun case_tac a = res_inst_tac [("P",a)] @{thm case_split_thm}
*}
(*** Special elimination rules *)
(*Classical implies (-->) elimination. *)
lemma impCE:
assumes major: "P-->Q"
and r1: "~P ==> R"
and r2: "Q ==> R"
shows R
apply (rule excluded_middle [THEN disjE])
apply (erule r1)
apply (rule r2)
apply (erule major [THEN mp])
done
(*This version of --> elimination works on Q before P. It works best for
those cases in which P holds "almost everywhere". Can't install as
default: would break old proofs.*)
lemma impCE':
assumes major: "P-->Q"
and r1: "Q ==> R"
and r2: "~P ==> R"
shows R
apply (rule excluded_middle [THEN disjE])
apply (erule r2)
apply (rule r1)
apply (erule major [THEN mp])
done
(*Double negation law*)
lemma notnotD: "~~P ==> P"
apply (rule classical)
apply (erule notE)
apply assumption
done
lemma contrapos2: "[| Q; ~ P ==> ~ Q |] ==> P"
apply (rule classical)
apply (drule (1) meta_mp)
apply (erule (1) notE)
done
(*** Tactics for implication and contradiction ***)
(*Classical <-> elimination. Proof substitutes P=Q in
~P ==> ~Q and P ==> Q *)
lemma iffCE:
assumes major: "P<->Q"
and r1: "[| P; Q |] ==> R"
and r2: "[| ~P; ~Q |] ==> R"
shows R
apply (rule major [unfolded iff_def, THEN conjE])
apply (elim impCE)
apply (erule (1) r2)
apply (erule (1) notE)+
apply (erule (1) r1)
done
(*Better for fast_tac: needs no quantifier duplication!*)
lemma alt_ex1E:
assumes major: "EX! x. P(x)"
and r: "!!x. [| P(x); ALL y y'. P(y) & P(y') --> y=y' |] ==> R"
shows R
using major
proof (rule ex1E)
fix x
assume * : "\<forall>y. P(y) \<longrightarrow> y = x"
assume "P(x)"
then show R
proof (rule r)
{ fix y y'
assume "P(y)" and "P(y')"
with * have "x = y" and "x = y'" by - (tactic "IntPr.fast_tac 1")+
then have "y = y'" by (rule subst)
} note r' = this
show "\<forall>y y'. P(y) \<and> P(y') \<longrightarrow> y = y'" by (intro strip, elim conjE) (rule r')
qed
qed
use "cladata.ML"
setup Cla.setup
setup cla_setup
setup case_setup
use "blastdata.ML"
setup Blast.setup
lemma ex1_functional: "[| EX! z. P(a,z); P(a,b); P(a,c) |] ==> b = c"
by blast
(* Elimination of True from asumptions: *)
lemma True_implies_equals: "(True ==> PROP P) == PROP P"
proof
assume "True \<Longrightarrow> PROP P"
from this and TrueI show "PROP P" .
next
assume "PROP P"
then show "PROP P" .
qed
lemma uncurry: "P --> Q --> R ==> P & Q --> R"
by blast
lemma iff_allI: "(!!x. P(x) <-> Q(x)) ==> (ALL x. P(x)) <-> (ALL x. Q(x))"
by blast
lemma iff_exI: "(!!x. P(x) <-> Q(x)) ==> (EX x. P(x)) <-> (EX x. Q(x))"
by blast
lemma all_comm: "(ALL x y. P(x,y)) <-> (ALL y x. P(x,y))" by blast
lemma ex_comm: "(EX x y. P(x,y)) <-> (EX y x. P(x,y))" by blast
use "simpdata.ML"
setup simpsetup
setup "Simplifier.method_setup Splitter.split_modifiers"
setup Splitter.setup
setup Clasimp.setup
setup EqSubst.setup
subsection {* Other simple lemmas *}
lemma [simp]: "((P-->R) <-> (Q-->R)) <-> ((P<->Q) | R)"
by blast
lemma [simp]: "((P-->Q) <-> (P-->R)) <-> (P --> (Q<->R))"
by blast
lemma not_disj_iff_imp: "~P | Q <-> (P-->Q)"
by blast
(** Monotonicity of implications **)
lemma conj_mono: "[| P1-->Q1; P2-->Q2 |] ==> (P1&P2) --> (Q1&Q2)"
by fast (*or (IntPr.fast_tac 1)*)
lemma disj_mono: "[| P1-->Q1; P2-->Q2 |] ==> (P1|P2) --> (Q1|Q2)"
by fast (*or (IntPr.fast_tac 1)*)
lemma imp_mono: "[| Q1-->P1; P2-->Q2 |] ==> (P1-->P2)-->(Q1-->Q2)"
by fast (*or (IntPr.fast_tac 1)*)
lemma imp_refl: "P-->P"
by (rule impI, assumption)
(*The quantifier monotonicity rules are also intuitionistically valid*)
lemma ex_mono: "(!!x. P(x) --> Q(x)) ==> (EX x. P(x)) --> (EX x. Q(x))"
by blast
lemma all_mono: "(!!x. P(x) --> Q(x)) ==> (ALL x. P(x)) --> (ALL x. Q(x))"
by blast
subsection {* Proof by cases and induction *}
text {* Proper handling of non-atomic rule statements. *}
constdefs
induct_forall where "induct_forall(P) == \<forall>x. P(x)"
induct_implies where "induct_implies(A, B) == A \<longrightarrow> B"
induct_equal where "induct_equal(x, y) == x = y"
induct_conj where "induct_conj(A, B) == A \<and> B"
lemma induct_forall_eq: "(!!x. P(x)) == Trueprop(induct_forall(\<lambda>x. P(x)))"
unfolding atomize_all induct_forall_def .
lemma induct_implies_eq: "(A ==> B) == Trueprop(induct_implies(A, B))"
unfolding atomize_imp induct_implies_def .
lemma induct_equal_eq: "(x == y) == Trueprop(induct_equal(x, y))"
unfolding atomize_eq induct_equal_def .
lemma induct_conj_eq:
includes meta_conjunction_syntax
shows "(A && B) == Trueprop(induct_conj(A, B))"
unfolding atomize_conj induct_conj_def .
lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
lemmas induct_rulify [symmetric, standard] = induct_atomize
lemmas induct_rulify_fallback =
induct_forall_def induct_implies_def induct_equal_def induct_conj_def
hide const induct_forall induct_implies induct_equal induct_conj
text {* Method setup. *}
ML {*
structure Induct = InductFun
(
val cases_default = @{thm case_split}
val atomize = @{thms induct_atomize}
val rulify = @{thms induct_rulify}
val rulify_fallback = @{thms induct_rulify_fallback}
);
*}
setup Induct.setup
declare case_split [cases type: o]
end