(* Title: FOL/IFOL.thy
Author: Lawrence C Paulson and Markus Wenzel
*)
section \<open>Intuitionistic first-order logic\<close>
theory IFOL
imports Pure
begin
ML_file "~~/src/Tools/misc_legacy.ML"
ML_file "~~/src/Provers/splitter.ML"
ML_file "~~/src/Provers/hypsubst.ML"
ML_file "~~/src/Tools/IsaPlanner/zipper.ML"
ML_file "~~/src/Tools/IsaPlanner/isand.ML"
ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML"
ML_file "~~/src/Provers/quantifier1.ML"
ML_file "~~/src/Tools/intuitionistic.ML"
ML_file "~~/src/Tools/project_rule.ML"
ML_file "~~/src/Tools/atomize_elim.ML"
subsection \<open>Syntax and axiomatic basis\<close>
setup Pure_Thy.old_appl_syntax_setup
class "term"
default_sort "term"
typedecl o
judgment
Trueprop :: "o \<Rightarrow> prop" ("(_)" 5)
subsubsection \<open>Equality\<close>
axiomatization
eq :: "['a, 'a] \<Rightarrow> o" (infixl "=" 50)
where
refl: "a = a" and
subst: "a = b \<Longrightarrow> P(a) \<Longrightarrow> P(b)"
subsubsection \<open>Propositional logic\<close>
axiomatization
False :: o and
conj :: "[o, o] => o" (infixr "\<and>" 35) and
disj :: "[o, o] => o" (infixr "\<or>" 30) and
imp :: "[o, o] => o" (infixr "\<longrightarrow>" 25)
where
conjI: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> P \<and> Q" and
conjunct1: "P \<and> Q \<Longrightarrow> P" and
conjunct2: "P \<and> Q \<Longrightarrow> Q" and
disjI1: "P \<Longrightarrow> P \<or> Q" and
disjI2: "Q \<Longrightarrow> P \<or> Q" and
disjE: "\<lbrakk>P \<or> Q; P \<Longrightarrow> R; Q \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" and
impI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<longrightarrow> Q" and
mp: "\<lbrakk>P \<longrightarrow> Q; P\<rbrakk> \<Longrightarrow> Q" and
FalseE: "False \<Longrightarrow> P"
subsubsection \<open>Quantifiers\<close>
axiomatization
All :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder "\<forall>" 10) and
Ex :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>" 10)
where
allI: "(\<And>x. P(x)) \<Longrightarrow> (\<forall>x. P(x))" and
spec: "(\<forall>x. P(x)) \<Longrightarrow> P(x)" and
exI: "P(x) \<Longrightarrow> (\<exists>x. P(x))" and
exE: "\<lbrakk>\<exists>x. P(x); \<And>x. P(x) \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
subsubsection \<open>Definitions\<close>
definition "True \<equiv> False \<longrightarrow> False"
definition Not ("\<not> _" [40] 40)
where not_def: "\<not> P \<equiv> P \<longrightarrow> False"
definition iff (infixr "\<longleftrightarrow>" 25)
where "P \<longleftrightarrow> Q \<equiv> (P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)"
definition Ex1 :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>!" 10)
where ex1_def: "\<exists>!x. P(x) \<equiv> \<exists>x. P(x) \<and> (\<forall>y. P(y) \<longrightarrow> y = x)"
axiomatization where -- \<open>Reflection, admissible\<close>
eq_reflection: "(x = y) \<Longrightarrow> (x \<equiv> y)" and
iff_reflection: "(P \<longleftrightarrow> Q) \<Longrightarrow> (P \<equiv> Q)"
abbreviation not_equal :: "['a, 'a] \<Rightarrow> o" (infixl "\<noteq>" 50)
where "x \<noteq> y \<equiv> \<not> (x = y)"
subsubsection \<open>Old-style ASCII syntax\<close>
notation (ASCII)
not_equal (infixl "~=" 50) and
Not ("~ _" [40] 40) and
conj (infixr "&" 35) and
disj (infixr "|" 30) and
All (binder "ALL " 10) and
Ex (binder "EX " 10) and
Ex1 (binder "EX! " 10) and
imp (infixr "-->" 25) and
iff (infixr "<->" 25)
subsection \<open>Lemmas and proof tools\<close>
lemmas strip = impI allI
lemma TrueI: True
unfolding True_def by (rule impI)
subsubsection \<open>Sequent-style elimination rules for @{text "\<and>"} @{text "\<longrightarrow>"} and @{text "\<forall>"}\<close>
lemma conjE:
assumes major: "P \<and> Q"
and r: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R"
shows R
apply (rule r)
apply (rule major [THEN conjunct1])
apply (rule major [THEN conjunct2])
done
lemma impE:
assumes major: "P \<longrightarrow> Q"
and P
and r: "Q \<Longrightarrow> R"
shows R
apply (rule r)
apply (rule major [THEN mp])
apply (rule \<open>P\<close>)
done
lemma allE:
assumes major: "\<forall>x. P(x)"
and r: "P(x) \<Longrightarrow> R"
shows R
apply (rule r)
apply (rule major [THEN spec])
done
text \<open>Duplicates the quantifier; for use with @{ML eresolve_tac}.\<close>
lemma all_dupE:
assumes major: "\<forall>x. P(x)"
and r: "\<lbrakk>P(x); \<forall>x. P(x)\<rbrakk> \<Longrightarrow> R"
shows R
apply (rule r)
apply (rule major [THEN spec])
apply (rule major)
done
subsubsection \<open>Negation rules, which translate between @{text "\<not> P"} and @{text "P \<longrightarrow> False"}\<close>
lemma notI: "(P \<Longrightarrow> False) \<Longrightarrow> \<not> P"
unfolding not_def by (erule impI)
lemma notE: "\<lbrakk>\<not> P; P\<rbrakk> \<Longrightarrow> R"
unfolding not_def by (erule mp [THEN FalseE])
lemma rev_notE: "\<lbrakk>P; \<not> P\<rbrakk> \<Longrightarrow> R"
by (erule notE)
text \<open>This is useful with the special implication rules for each kind of @{text P}.\<close>
lemma not_to_imp:
assumes "\<not> P"
and r: "P \<longrightarrow> False \<Longrightarrow> Q"
shows Q
apply (rule r)
apply (rule impI)
apply (erule notE [OF \<open>\<not> P\<close>])
done
text \<open>
For substitution into an assumption @{text P}, reduce @{text Q} to @{text
"P \<longrightarrow> Q"}, substitute into this implication, then apply @{text impI} to
move @{text P} back into the assumptions.
\<close>
lemma rev_mp: "\<lbrakk>P; P \<longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
by (erule mp)
text \<open>Contrapositive of an inference rule.\<close>
lemma contrapos:
assumes major: "\<not> Q"
and minor: "P \<Longrightarrow> Q"
shows "\<not> P"
apply (rule major [THEN notE, THEN notI])
apply (erule minor)
done
subsubsection \<open>Modus Ponens Tactics\<close>
text \<open>
Finds @{text "P \<longrightarrow> Q"} and P in the assumptions, replaces implication by
@{text Q}.
\<close>
ML \<open>
fun mp_tac ctxt i =
eresolve_tac ctxt @{thms notE impE} i THEN assume_tac ctxt i;
fun eq_mp_tac ctxt i =
eresolve_tac ctxt @{thms notE impE} i THEN eq_assume_tac i;
\<close>
subsection \<open>If-and-only-if\<close>
lemma iffI: "\<lbrakk>P \<Longrightarrow> Q; Q \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P \<longleftrightarrow> Q"
apply (unfold iff_def)
apply (rule conjI)
apply (erule impI)
apply (erule impI)
done
lemma iffE:
assumes major: "P \<longleftrightarrow> Q"
and r: "P \<longrightarrow> Q \<Longrightarrow> Q \<longrightarrow> P \<Longrightarrow> R"
shows R
apply (insert major, unfold iff_def)
apply (erule conjE)
apply (erule r)
apply assumption
done
subsubsection \<open>Destruct rules for @{text "\<longleftrightarrow>"} similar to Modus Ponens\<close>
lemma iffD1: "\<lbrakk>P \<longleftrightarrow> Q; P\<rbrakk> \<Longrightarrow> Q"
apply (unfold iff_def)
apply (erule conjunct1 [THEN mp])
apply assumption
done
lemma iffD2: "\<lbrakk>P \<longleftrightarrow> Q; Q\<rbrakk> \<Longrightarrow> P"
apply (unfold iff_def)
apply (erule conjunct2 [THEN mp])
apply assumption
done
lemma rev_iffD1: "\<lbrakk>P; P \<longleftrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
apply (erule iffD1)
apply assumption
done
lemma rev_iffD2: "\<lbrakk>Q; P \<longleftrightarrow> Q\<rbrakk> \<Longrightarrow> P"
apply (erule iffD2)
apply assumption
done
lemma iff_refl: "P \<longleftrightarrow> P"
by (rule iffI)
lemma iff_sym: "Q \<longleftrightarrow> P \<Longrightarrow> P \<longleftrightarrow> Q"
apply (erule iffE)
apply (rule iffI)
apply (assumption | erule mp)+
done
lemma iff_trans: "\<lbrakk>P \<longleftrightarrow> Q; Q \<longleftrightarrow> R\<rbrakk> \<Longrightarrow> P \<longleftrightarrow> R"
apply (rule iffI)
apply (assumption | erule iffE | erule (1) notE impE)+
done
subsection \<open>Unique existence\<close>
text \<open>
NOTE THAT the following 2 quantifications:
\<^item> EX!x such that [EX!y such that P(x,y)] (sequential)
\<^item> EX!x,y such that P(x,y) (simultaneous)
do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential.
\<close>
lemma ex1I: "P(a) \<Longrightarrow> (\<And>x. P(x) \<Longrightarrow> x = a) \<Longrightarrow> \<exists>!x. P(x)"
apply (unfold ex1_def)
apply (assumption | rule exI conjI allI impI)+
done
text \<open>Sometimes easier to use: the premises have no shared variables. Safe!\<close>
lemma ex_ex1I: "\<exists>x. P(x) \<Longrightarrow> (\<And>x y. \<lbrakk>P(x); P(y)\<rbrakk> \<Longrightarrow> x = y) \<Longrightarrow> \<exists>!x. P(x)"
apply (erule exE)
apply (rule ex1I)
apply assumption
apply assumption
done
lemma ex1E: "\<exists>! x. P(x) \<Longrightarrow> (\<And>x. \<lbrakk>P(x); \<forall>y. P(y) \<longrightarrow> y = x\<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
apply (unfold ex1_def)
apply (assumption | erule exE conjE)+
done
subsubsection \<open>@{text "\<longleftrightarrow>"} congruence rules for simplification\<close>
text \<open>Use @{text iffE} on a premise. For @{text conj_cong}, @{text
imp_cong}, @{text all_cong}, @{text ex_cong}.\<close>
ML \<open>
fun iff_tac ctxt prems i =
resolve_tac ctxt (prems RL @{thms iffE}) i THEN
REPEAT1 (eresolve_tac ctxt @{thms asm_rl mp} i);
\<close>
method_setup iff =
\<open>Attrib.thms >>
(fn prems => fn ctxt => SIMPLE_METHOD' (iff_tac ctxt prems))\<close>
lemma conj_cong:
assumes "P \<longleftrightarrow> P'"
and "P' \<Longrightarrow> Q \<longleftrightarrow> Q'"
shows "(P \<and> Q) \<longleftrightarrow> (P' \<and> Q')"
apply (insert assms)
apply (assumption | rule iffI conjI | erule iffE conjE mp | iff assms)+
done
text \<open>Reversed congruence rule! Used in ZF/Order.\<close>
lemma conj_cong2:
assumes "P \<longleftrightarrow> P'"
and "P' \<Longrightarrow> Q \<longleftrightarrow> Q'"
shows "(Q \<and> P) \<longleftrightarrow> (Q' \<and> P')"
apply (insert assms)
apply (assumption | rule iffI conjI | erule iffE conjE mp | iff assms)+
done
lemma disj_cong:
assumes "P \<longleftrightarrow> P'" and "Q \<longleftrightarrow> Q'"
shows "(P \<or> Q) \<longleftrightarrow> (P' \<or> Q')"
apply (insert assms)
apply (erule iffE disjE disjI1 disjI2 |
assumption | rule iffI | erule (1) notE impE)+
done
lemma imp_cong:
assumes "P \<longleftrightarrow> P'"
and "P' \<Longrightarrow> Q \<longleftrightarrow> Q'"
shows "(P \<longrightarrow> Q) \<longleftrightarrow> (P' \<longrightarrow> Q')"
apply (insert assms)
apply (assumption | rule iffI impI | erule iffE | erule (1) notE impE | iff assms)+
done
lemma iff_cong: "\<lbrakk>P \<longleftrightarrow> P'; Q \<longleftrightarrow> Q'\<rbrakk> \<Longrightarrow> (P \<longleftrightarrow> Q) \<longleftrightarrow> (P' \<longleftrightarrow> Q')"
apply (erule iffE | assumption | rule iffI | erule (1) notE impE)+
done
lemma not_cong: "P \<longleftrightarrow> P' \<Longrightarrow> \<not> P \<longleftrightarrow> \<not> P'"
apply (assumption | rule iffI notI | erule (1) notE impE | erule iffE notE)+
done
lemma all_cong:
assumes "\<And>x. P(x) \<longleftrightarrow> Q(x)"
shows "(\<forall>x. P(x)) \<longleftrightarrow> (\<forall>x. Q(x))"
apply (assumption | rule iffI allI | erule (1) notE impE | erule allE | iff assms)+
done
lemma ex_cong:
assumes "\<And>x. P(x) \<longleftrightarrow> Q(x)"
shows "(\<exists>x. P(x)) \<longleftrightarrow> (\<exists>x. Q(x))"
apply (erule exE | assumption | rule iffI exI | erule (1) notE impE | iff assms)+
done
lemma ex1_cong:
assumes "\<And>x. P(x) \<longleftrightarrow> Q(x)"
shows "(\<exists>!x. P(x)) \<longleftrightarrow> (\<exists>!x. Q(x))"
apply (erule ex1E spec [THEN mp] | assumption | rule iffI ex1I | erule (1) notE impE | iff assms)+
done
subsection \<open>Equality rules\<close>
lemma sym: "a = b \<Longrightarrow> b = a"
apply (erule subst)
apply (rule refl)
done
lemma trans: "\<lbrakk>a = b; b = c\<rbrakk> \<Longrightarrow> a = c"
apply (erule subst, assumption)
done
lemma not_sym: "b \<noteq> a \<Longrightarrow> a \<noteq> b"
apply (erule contrapos)
apply (erule sym)
done
text \<open>
Two theorems for rewriting only one instance of a definition:
the first for definitions of formulae and the second for terms.
\<close>
lemma def_imp_iff: "(A \<equiv> B) \<Longrightarrow> A \<longleftrightarrow> B"
apply unfold
apply (rule iff_refl)
done
lemma meta_eq_to_obj_eq: "(A \<equiv> B) \<Longrightarrow> A = B"
apply unfold
apply (rule refl)
done
lemma meta_eq_to_iff: "x \<equiv> y \<Longrightarrow> x \<longleftrightarrow> y"
by unfold (rule iff_refl)
text \<open>Substitution.\<close>
lemma ssubst: "\<lbrakk>b = a; P(a)\<rbrakk> \<Longrightarrow> P(b)"
apply (drule sym)
apply (erule (1) subst)
done
text \<open>A special case of @{text ex1E} that would otherwise need quantifier
expansion.\<close>
lemma ex1_equalsE: "\<lbrakk>\<exists>!x. P(x); P(a); P(b)\<rbrakk> \<Longrightarrow> a = b"
apply (erule ex1E)
apply (rule trans)
apply (rule_tac [2] sym)
apply (assumption | erule spec [THEN mp])+
done
subsubsection \<open>Polymorphic congruence rules\<close>
lemma subst_context: "a = b \<Longrightarrow> t(a) = t(b)"
apply (erule ssubst)
apply (rule refl)
done
lemma subst_context2: "\<lbrakk>a = b; c = d\<rbrakk> \<Longrightarrow> t(a,c) = t(b,d)"
apply (erule ssubst)+
apply (rule refl)
done
lemma subst_context3: "\<lbrakk>a = b; c = d; e = f\<rbrakk> \<Longrightarrow> t(a,c,e) = t(b,d,f)"
apply (erule ssubst)+
apply (rule refl)
done
text \<open>
Useful with @{ML eresolve_tac} for proving equalities from known
equalities.
a = b
| |
c = d
\<close>
lemma box_equals: "\<lbrakk>a = b; a = c; b = d\<rbrakk> \<Longrightarrow> c = d"
apply (rule trans)
apply (rule trans)
apply (rule sym)
apply assumption+
done
text \<open>Dual of @{text box_equals}: for proving equalities backwards.\<close>
lemma simp_equals: "\<lbrakk>a = c; b = d; c = d\<rbrakk> \<Longrightarrow> a = b"
apply (rule trans)
apply (rule trans)
apply assumption+
apply (erule sym)
done
subsubsection \<open>Congruence rules for predicate letters\<close>
lemma pred1_cong: "a = a' \<Longrightarrow> P(a) \<longleftrightarrow> P(a')"
apply (rule iffI)
apply (erule (1) subst)
apply (erule (1) ssubst)
done
lemma pred2_cong: "\<lbrakk>a = a'; b = b'\<rbrakk> \<Longrightarrow> P(a,b) \<longleftrightarrow> P(a',b')"
apply (rule iffI)
apply (erule subst)+
apply assumption
apply (erule ssubst)+
apply assumption
done
lemma pred3_cong: "\<lbrakk>a = a'; b = b'; c = c'\<rbrakk> \<Longrightarrow> P(a,b,c) \<longleftrightarrow> P(a',b',c')"
apply (rule iffI)
apply (erule subst)+
apply assumption
apply (erule ssubst)+
apply assumption
done
text \<open>Special case for the equality predicate!\<close>
lemma eq_cong: "\<lbrakk>a = a'; b = b'\<rbrakk> \<Longrightarrow> a = b \<longleftrightarrow> a' = b'"
apply (erule (1) pred2_cong)
done
subsection \<open>Simplifications of assumed implications\<close>
text \<open>
Roy Dyckhoff has proved that @{text conj_impE}, @{text disj_impE}, and
@{text imp_impE} used with @{ML mp_tac} (restricted to atomic formulae) is
COMPLETE for intuitionistic propositional logic.
See R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
(preprint, University of St Andrews, 1991).
\<close>
lemma conj_impE:
assumes major: "(P \<and> Q) \<longrightarrow> S"
and r: "P \<longrightarrow> (Q \<longrightarrow> S) \<Longrightarrow> R"
shows R
by (assumption | rule conjI impI major [THEN mp] r)+
lemma disj_impE:
assumes major: "(P \<or> Q) \<longrightarrow> S"
and r: "\<lbrakk>P \<longrightarrow> S; Q \<longrightarrow> S\<rbrakk> \<Longrightarrow> R"
shows R
by (assumption | rule disjI1 disjI2 impI major [THEN mp] r)+
text \<open>Simplifies the implication. Classical version is stronger.
Still UNSAFE since Q must be provable -- backtracking needed.\<close>
lemma imp_impE:
assumes major: "(P \<longrightarrow> Q) \<longrightarrow> S"
and r1: "\<lbrakk>P; Q \<longrightarrow> S\<rbrakk> \<Longrightarrow> Q"
and r2: "S \<Longrightarrow> R"
shows R
by (assumption | rule impI major [THEN mp] r1 r2)+
text \<open>Simplifies the implication. Classical version is stronger.
Still UNSAFE since ~P must be provable -- backtracking needed.\<close>
lemma not_impE: "\<not> P \<longrightarrow> S \<Longrightarrow> (P \<Longrightarrow> False) \<Longrightarrow> (S \<Longrightarrow> R) \<Longrightarrow> R"
apply (drule mp)
apply (rule notI)
apply assumption
apply assumption
done
text \<open>Simplifies the implication. UNSAFE.\<close>
lemma iff_impE:
assumes major: "(P \<longleftrightarrow> Q) \<longrightarrow> S"
and r1: "\<lbrakk>P; Q \<longrightarrow> S\<rbrakk> \<Longrightarrow> Q"
and r2: "\<lbrakk>Q; P \<longrightarrow> S\<rbrakk> \<Longrightarrow> P"
and r3: "S \<Longrightarrow> R"
shows R
apply (assumption | rule iffI impI major [THEN mp] r1 r2 r3)+
done
text \<open>What if @{text "(\<forall>x. \<not> \<not> P(x)) \<longrightarrow> \<not> \<not> (\<forall>x. P(x))"} is an assumption?
UNSAFE.\<close>
lemma all_impE:
assumes major: "(\<forall>x. P(x)) \<longrightarrow> S"
and r1: "\<And>x. P(x)"
and r2: "S \<Longrightarrow> R"
shows R
apply (rule allI impI major [THEN mp] r1 r2)+
done
text \<open>
Unsafe: @{text "\<exists>x. P(x)) \<longrightarrow> S"} is equivalent
to @{text "\<forall>x. P(x) \<longrightarrow> S"}.\<close>
lemma ex_impE:
assumes major: "(\<exists>x. P(x)) \<longrightarrow> S"
and r: "P(x) \<longrightarrow> S \<Longrightarrow> R"
shows R
apply (assumption | rule exI impI major [THEN mp] r)+
done
text \<open>Courtesy of Krzysztof Grabczewski.\<close>
lemma disj_imp_disj: "P \<or> Q \<Longrightarrow> (P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> S) \<Longrightarrow> R \<or> S"
apply (erule disjE)
apply (rule disjI1) apply assumption
apply (rule disjI2) apply assumption
done
ML \<open>
structure Project_Rule = Project_Rule
(
val conjunct1 = @{thm conjunct1}
val conjunct2 = @{thm conjunct2}
val mp = @{thm mp}
)
\<close>
ML_file "fologic.ML"
lemma thin_refl: "\<lbrakk>x = x; PROP W\<rbrakk> \<Longrightarrow> PROP W" .
ML \<open>
structure Hypsubst = Hypsubst
(
val dest_eq = FOLogic.dest_eq
val dest_Trueprop = FOLogic.dest_Trueprop
val dest_imp = FOLogic.dest_imp
val eq_reflection = @{thm eq_reflection}
val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
val imp_intr = @{thm impI}
val rev_mp = @{thm rev_mp}
val subst = @{thm subst}
val sym = @{thm sym}
val thin_refl = @{thm thin_refl}
);
open Hypsubst;
\<close>
ML_file "intprover.ML"
subsection \<open>Intuitionistic Reasoning\<close>
setup \<open>Intuitionistic.method_setup @{binding iprover}\<close>
lemma impE':
assumes 1: "P \<longrightarrow> Q"
and 2: "Q \<Longrightarrow> R"
and 3: "P \<longrightarrow> Q \<Longrightarrow> P"
shows R
proof -
from 3 and 1 have P .
with 1 have Q by (rule impE)
with 2 show R .
qed
lemma allE':
assumes 1: "\<forall>x. P(x)"
and 2: "P(x) \<Longrightarrow> \<forall>x. P(x) \<Longrightarrow> Q"
shows Q
proof -
from 1 have "P(x)" by (rule spec)
from this and 1 show Q by (rule 2)
qed
lemma notE':
assumes 1: "\<not> P"
and 2: "\<not> P \<Longrightarrow> P"
shows R
proof -
from 2 and 1 have P .
with 1 show R by (rule notE)
qed
lemmas [Pure.elim!] = disjE iffE FalseE conjE exE
and [Pure.intro!] = iffI conjI impI TrueI notI allI refl
and [Pure.elim 2] = allE notE' impE'
and [Pure.intro] = exI disjI2 disjI1
setup \<open>
Context_Rules.addSWrapper
(fn ctxt => fn tac => hyp_subst_tac ctxt ORELSE' tac)
\<close>
lemma iff_not_sym: "\<not> (Q \<longleftrightarrow> P) \<Longrightarrow> \<not> (P \<longleftrightarrow> Q)"
by iprover
lemmas [sym] = sym iff_sym not_sym iff_not_sym
and [Pure.elim?] = iffD1 iffD2 impE
lemma eq_commute: "a = b \<longleftrightarrow> b = a"
apply (rule iffI)
apply (erule sym)+
done
subsection \<open>Atomizing meta-level rules\<close>
lemma atomize_all [atomize]: "(\<And>x. P(x)) \<equiv> Trueprop (\<forall>x. P(x))"
proof
assume "\<And>x. P(x)"
then show "\<forall>x. P(x)" ..
next
assume "\<forall>x. P(x)"
then show "\<And>x. P(x)" ..
qed
lemma atomize_imp [atomize]: "(A \<Longrightarrow> B) \<equiv> Trueprop (A \<longrightarrow> B)"
proof
assume "A \<Longrightarrow> B"
then show "A \<longrightarrow> B" ..
next
assume "A \<longrightarrow> B" and A
then show B by (rule mp)
qed
lemma atomize_eq [atomize]: "(x \<equiv> y) \<equiv> Trueprop (x = y)"
proof
assume "x \<equiv> y"
show "x = y" unfolding \<open>x \<equiv> y\<close> by (rule refl)
next
assume "x = y"
then show "x \<equiv> y" by (rule eq_reflection)
qed
lemma atomize_iff [atomize]: "(A \<equiv> B) \<equiv> Trueprop (A \<longleftrightarrow> B)"
proof
assume "A \<equiv> B"
show "A \<longleftrightarrow> B" unfolding \<open>A \<equiv> B\<close> by (rule iff_refl)
next
assume "A \<longleftrightarrow> B"
then show "A \<equiv> B" by (rule iff_reflection)
qed
lemma atomize_conj [atomize]: "(A &&& B) \<equiv> Trueprop (A \<and> B)"
proof
assume conj: "A &&& B"
show "A \<and> B"
proof (rule conjI)
from conj show A by (rule conjunctionD1)
from conj show B by (rule conjunctionD2)
qed
next
assume conj: "A \<and> B"
show "A &&& B"
proof -
from conj show A ..
from conj show B ..
qed
qed
lemmas [symmetric, rulify] = atomize_all atomize_imp
and [symmetric, defn] = atomize_all atomize_imp atomize_eq atomize_iff
subsection \<open>Atomizing elimination rules\<close>
lemma atomize_exL[atomize_elim]: "(\<And>x. P(x) \<Longrightarrow> Q) \<equiv> ((\<exists>x. P(x)) \<Longrightarrow> Q)"
by rule iprover+
lemma atomize_conjL[atomize_elim]: "(A \<Longrightarrow> B \<Longrightarrow> C) \<equiv> (A \<and> B \<Longrightarrow> C)"
by rule iprover+
lemma atomize_disjL[atomize_elim]: "((A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C) \<equiv> ((A \<or> B \<Longrightarrow> C) \<Longrightarrow> C)"
by rule iprover+
lemma atomize_elimL[atomize_elim]: "(\<And>B. (A \<Longrightarrow> B) \<Longrightarrow> B) \<equiv> Trueprop(A)" ..
subsection \<open>Calculational rules\<close>
lemma forw_subst: "a = b \<Longrightarrow> P(b) \<Longrightarrow> P(a)"
by (rule ssubst)
lemma back_subst: "P(a) \<Longrightarrow> a = b \<Longrightarrow> P(b)"
by (rule subst)
text \<open>
Note that this list of rules is in reverse order of priorities.
\<close>
lemmas basic_trans_rules [trans] =
forw_subst
back_subst
rev_mp
mp
trans
subsection \<open>``Let'' declarations\<close>
nonterminal letbinds and letbind
definition Let :: "['a::{}, 'a => 'b] \<Rightarrow> ('b::{})"
where "Let(s, f) \<equiv> f(s)"
syntax
"_bind" :: "[pttrn, 'a] => letbind" ("(2_ =/ _)" 10)
"" :: "letbind => letbinds" ("_")
"_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _")
"_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" 10)
translations
"_Let(_binds(b, bs), e)" == "_Let(b, _Let(bs, e))"
"let x = a in e" == "CONST Let(a, \<lambda>x. e)"
lemma LetI:
assumes "\<And>x. x = t \<Longrightarrow> P(u(x))"
shows "P(let x = t in u(x))"
apply (unfold Let_def)
apply (rule refl [THEN assms])
done
subsection \<open>Intuitionistic simplification rules\<close>
lemma conj_simps:
"P \<and> True \<longleftrightarrow> P"
"True \<and> P \<longleftrightarrow> P"
"P \<and> False \<longleftrightarrow> False"
"False \<and> P \<longleftrightarrow> False"
"P \<and> P \<longleftrightarrow> P"
"P \<and> P \<and> Q \<longleftrightarrow> P \<and> Q"
"P \<and> \<not> P \<longleftrightarrow> False"
"\<not> P \<and> P \<longleftrightarrow> False"
"(P \<and> Q) \<and> R \<longleftrightarrow> P \<and> (Q \<and> R)"
by iprover+
lemma disj_simps:
"P \<or> True \<longleftrightarrow> True"
"True \<or> P \<longleftrightarrow> True"
"P \<or> False \<longleftrightarrow> P"
"False \<or> P \<longleftrightarrow> P"
"P \<or> P \<longleftrightarrow> P"
"P \<or> P \<or> Q \<longleftrightarrow> P \<or> Q"
"(P \<or> Q) \<or> R \<longleftrightarrow> P \<or> (Q \<or> R)"
by iprover+
lemma not_simps:
"\<not> (P \<or> Q) \<longleftrightarrow> \<not> P \<and> \<not> Q"
"\<not> False \<longleftrightarrow> True"
"\<not> True \<longleftrightarrow> False"
by iprover+
lemma imp_simps:
"(P \<longrightarrow> False) \<longleftrightarrow> \<not> P"
"(P \<longrightarrow> True) \<longleftrightarrow> True"
"(False \<longrightarrow> P) \<longleftrightarrow> True"
"(True \<longrightarrow> P) \<longleftrightarrow> P"
"(P \<longrightarrow> P) \<longleftrightarrow> True"
"(P \<longrightarrow> \<not> P) \<longleftrightarrow> \<not> P"
by iprover+
lemma iff_simps:
"(True \<longleftrightarrow> P) \<longleftrightarrow> P"
"(P \<longleftrightarrow> True) \<longleftrightarrow> P"
"(P \<longleftrightarrow> P) \<longleftrightarrow> True"
"(False \<longleftrightarrow> P) \<longleftrightarrow> \<not> P"
"(P \<longleftrightarrow> False) \<longleftrightarrow> \<not> P"
by iprover+
text \<open>The @{text "x = t"} versions are needed for the simplification
procedures.\<close>
lemma quant_simps:
"\<And>P. (\<forall>x. P) \<longleftrightarrow> P"
"(\<forall>x. x = t \<longrightarrow> P(x)) \<longleftrightarrow> P(t)"
"(\<forall>x. t = x \<longrightarrow> P(x)) \<longleftrightarrow> P(t)"
"\<And>P. (\<exists>x. P) \<longleftrightarrow> P"
"\<exists>x. x = t"
"\<exists>x. t = x"
"(\<exists>x. x = t \<and> P(x)) \<longleftrightarrow> P(t)"
"(\<exists>x. t = x \<and> P(x)) \<longleftrightarrow> P(t)"
by iprover+
text \<open>These are NOT supplied by default!\<close>
lemma distrib_simps:
"P \<and> (Q \<or> R) \<longleftrightarrow> P \<and> Q \<or> P \<and> R"
"(Q \<or> R) \<and> P \<longleftrightarrow> Q \<and> P \<or> R \<and> P"
"(P \<or> Q \<longrightarrow> R) \<longleftrightarrow> (P \<longrightarrow> R) \<and> (Q \<longrightarrow> R)"
by iprover+
subsubsection \<open>Conversion into rewrite rules\<close>
lemma P_iff_F: "\<not> P \<Longrightarrow> (P \<longleftrightarrow> False)"
by iprover
lemma iff_reflection_F: "\<not> P \<Longrightarrow> (P \<equiv> False)"
by (rule P_iff_F [THEN iff_reflection])
lemma P_iff_T: "P \<Longrightarrow> (P \<longleftrightarrow> True)"
by iprover
lemma iff_reflection_T: "P \<Longrightarrow> (P \<equiv> True)"
by (rule P_iff_T [THEN iff_reflection])
subsubsection \<open>More rewrite rules\<close>
lemma conj_commute: "P \<and> Q \<longleftrightarrow> Q \<and> P" by iprover
lemma conj_left_commute: "P \<and> (Q \<and> R) \<longleftrightarrow> Q \<and> (P \<and> R)" by iprover
lemmas conj_comms = conj_commute conj_left_commute
lemma disj_commute: "P \<or> Q \<longleftrightarrow> Q \<or> P" by iprover
lemma disj_left_commute: "P \<or> (Q \<or> R) \<longleftrightarrow> Q \<or> (P \<or> R)" by iprover
lemmas disj_comms = disj_commute disj_left_commute
lemma conj_disj_distribL: "P \<and> (Q \<or> R) \<longleftrightarrow> (P \<and> Q \<or> P \<and> R)" by iprover
lemma conj_disj_distribR: "(P \<or> Q) \<and> R \<longleftrightarrow> (P \<and> R \<or> Q \<and> R)" by iprover
lemma disj_conj_distribL: "P \<or> (Q \<and> R) \<longleftrightarrow> (P \<or> Q) \<and> (P \<or> R)" by iprover
lemma disj_conj_distribR: "(P \<and> Q) \<or> R \<longleftrightarrow> (P \<or> R) \<and> (Q \<or> R)" by iprover
lemma imp_conj_distrib: "(P \<longrightarrow> (Q \<and> R)) \<longleftrightarrow> (P \<longrightarrow> Q) \<and> (P \<longrightarrow> R)" by iprover
lemma imp_conj: "((P \<and> Q) \<longrightarrow> R) \<longleftrightarrow> (P \<longrightarrow> (Q \<longrightarrow> R))" by iprover
lemma imp_disj: "(P \<or> Q \<longrightarrow> R) \<longleftrightarrow> (P \<longrightarrow> R) \<and> (Q \<longrightarrow> R)" by iprover
lemma de_Morgan_disj: "(\<not> (P \<or> Q)) \<longleftrightarrow> (\<not> P \<and> \<not> Q)" by iprover
lemma not_ex: "(\<not> (\<exists>x. P(x))) \<longleftrightarrow> (\<forall>x. \<not> P(x))" by iprover
lemma imp_ex: "((\<exists>x. P(x)) \<longrightarrow> Q) \<longleftrightarrow> (\<forall>x. P(x) \<longrightarrow> Q)" by iprover
lemma ex_disj_distrib: "(\<exists>x. P(x) \<or> Q(x)) \<longleftrightarrow> ((\<exists>x. P(x)) \<or> (\<exists>x. Q(x)))"
by iprover
lemma all_conj_distrib: "(\<forall>x. P(x) \<and> Q(x)) \<longleftrightarrow> ((\<forall>x. P(x)) \<and> (\<forall>x. Q(x)))"
by iprover
end