enabling parallel execution of testers but removing more informative quickcheck output
(* Title: ZF/ex/LList.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Codatatype definition of Lazy Lists.
Equality for llist(A) as a greatest fixed point
Functions for Lazy Lists
STILL NEEDS:
co_recursion for defining lconst, flip, etc.
a typing rule for it, based on some notion of "productivity..."
*)
theory LList imports Main begin
consts
llist :: "i=>i";
codatatype
"llist(A)" = LNil | LCons ("a \<in> A", "l \<in> llist(A)")
(*Coinductive definition of equality*)
consts
lleq :: "i=>i"
(*Previously used <*> in the domain and variant pairs as elements. But
standard pairs work just as well. To use variant pairs, must change prefix
a q/Q to the Sigma, Pair and converse rules.*)
coinductive
domains "lleq(A)" <= "llist(A) * llist(A)"
intros
LNil: "<LNil, LNil> \<in> lleq(A)"
LCons: "[| a \<in> A; <l,l'> \<in> lleq(A) |]
==> <LCons(a,l), LCons(a,l')> \<in> lleq(A)"
type_intros llist.intros
(*Lazy list functions; flip is not definitional!*)
definition
lconst :: "i => i" where
"lconst(a) == lfp(univ(a), %l. LCons(a,l))"
axiomatization flip :: "i => i"
where
flip_LNil: "flip(LNil) = LNil" and
flip_LCons: "[| x \<in> bool; l \<in> llist(bool) |]
==> flip(LCons(x,l)) = LCons(not(x), flip(l))"
(*These commands cause classical reasoning to regard the subset relation
as primitive, not reducing it to membership*)
declare subsetI [rule del]
subsetCE [rule del]
declare subset_refl [intro!]
cons_subsetI [intro!]
subset_consI [intro!]
Union_least [intro!]
UN_least [intro!]
Un_least [intro!]
Inter_greatest [intro!]
Int_greatest [intro!]
RepFun_subset [intro!]
Un_upper1 [intro!]
Un_upper2 [intro!]
Int_lower1 [intro!]
Int_lower2 [intro!]
(*An elimination rule, for type-checking*)
inductive_cases LConsE: "LCons(a,l) \<in> llist(A)"
(*Proving freeness results*)
lemma LCons_iff: "LCons(a,l)=LCons(a',l') <-> a=a' & l=l'"
by auto
lemma LNil_LCons_iff: "~ LNil=LCons(a,l)"
by auto
(*
lemma llist_unfold: "llist(A) = {0} <+> (A <*> llist(A))";
let open llist val rew = rewrite_rule con_defs in
by (fast_tac (claset() addSIs (subsetI ::map rew intros) addEs [rew elim]) 1)
end
done
*)
(*** Lemmas to justify using "llist" in other recursive type definitions ***)
lemma llist_mono: "A \<subseteq> B ==> llist(A) \<subseteq> llist(B)"
apply (unfold llist.defs )
apply (rule gfp_mono)
apply (rule llist.bnd_mono)
apply (assumption | rule quniv_mono basic_monos)+
done
(** Closure of quniv(A) under llist -- why so complex? Its a gfp... **)
declare QPair_Int_Vset_subset_UN [THEN subset_trans, intro!]
QPair_subset_univ [intro!]
empty_subsetI [intro!]
one_in_quniv [THEN qunivD, intro!]
declare qunivD [dest!]
declare Ord_in_Ord [elim!]
lemma llist_quniv_lemma [rule_format]:
"Ord(i) ==> \<forall>l \<in> llist(quniv(A)). l Int Vset(i) \<subseteq> univ(eclose(A))"
apply (erule trans_induct)
apply (rule ballI)
apply (erule llist.cases)
apply (simp_all add: QInl_def QInr_def llist.con_defs)
(*LCons case: I simply can't get rid of the deepen_tac*)
apply (deepen 2 intro: Ord_trans Int_lower1 [THEN subset_trans])
done
lemma llist_quniv: "llist(quniv(A)) \<subseteq> quniv(A)"
apply (rule qunivI [THEN subsetI])
apply (rule Int_Vset_subset)
apply (assumption | rule llist_quniv_lemma)+
done
lemmas llist_subset_quniv =
subset_trans [OF llist_mono llist_quniv]
(*** Lazy List Equality: lleq ***)
declare QPair_Int_Vset_subset_UN [THEN subset_trans, intro!]
QPair_mono [intro!]
declare Ord_in_Ord [elim!]
(*Lemma for proving finality. Unfold the lazy list; use induction hypothesis*)
lemma lleq_Int_Vset_subset [rule_format]:
"Ord(i) ==> \<forall>l l'. <l,l'> \<in> lleq(A) --> l Int Vset(i) \<subseteq> l'"
apply (erule trans_induct)
apply (intro allI impI)
apply (erule lleq.cases)
apply (unfold QInr_def llist.con_defs, safe)
apply (fast elim!: Ord_trans bspec [elim_format])
done
(*lleq(A) is a symmetric relation because qconverse(lleq(A)) is a fixedpoint*)
lemma lleq_symmetric: "<l,l'> \<in> lleq(A) ==> <l',l> \<in> lleq(A)"
apply (erule lleq.coinduct [OF converseI])
apply (rule lleq.dom_subset [THEN converse_type], safe)
apply (erule lleq.cases, blast+)
done
lemma lleq_implies_equal: "<l,l'> \<in> lleq(A) ==> l=l'"
apply (rule equalityI)
apply (assumption | rule lleq_Int_Vset_subset [THEN Int_Vset_subset] |
erule lleq_symmetric)+
done
lemma equal_llist_implies_leq:
"[| l=l'; l \<in> llist(A) |] ==> <l,l'> \<in> lleq(A)"
apply (rule_tac X = "{<l,l>. l \<in> llist (A) }" in lleq.coinduct)
apply blast
apply safe
apply (erule_tac a=l in llist.cases, fast+)
done
(*** Lazy List Functions ***)
(*Examples of coinduction for type-checking and to prove llist equations*)
(*** lconst -- defined directly using lfp, but equivalent to a LList_corec ***)
lemma lconst_fun_bnd_mono: "bnd_mono(univ(a), %l. LCons(a,l))"
apply (unfold llist.con_defs )
apply (rule bnd_monoI)
apply (blast intro: A_subset_univ QInr_subset_univ)
apply (blast intro: subset_refl QInr_mono QPair_mono)
done
(* lconst(a) = LCons(a,lconst(a)) *)
lemmas lconst = def_lfp_unfold [OF lconst_def lconst_fun_bnd_mono]
lemmas lconst_subset = lconst_def [THEN def_lfp_subset]
lemmas member_subset_Union_eclose = arg_into_eclose [THEN Union_upper]
lemma lconst_in_quniv: "a \<in> A ==> lconst(a) \<in> quniv(A)"
apply (rule lconst_subset [THEN subset_trans, THEN qunivI])
apply (erule arg_into_eclose [THEN eclose_subset, THEN univ_mono])
done
lemma lconst_type: "a \<in> A ==> lconst(a): llist(A)"
apply (rule singletonI [THEN llist.coinduct])
apply (erule lconst_in_quniv [THEN singleton_subsetI])
apply (fast intro!: lconst)
done
(*** flip --- equations merely assumed; certain consequences proved ***)
declare flip_LNil [simp]
flip_LCons [simp]
not_type [simp]
lemma bool_Int_subset_univ: "b \<in> bool ==> b Int X \<subseteq> univ(eclose(A))"
by (fast intro: Int_lower1 [THEN subset_trans] elim!: boolE)
declare not_type [intro!]
declare bool_Int_subset_univ [intro]
(*Reasoning borrowed from lleq.ML; a similar proof works for all
"productive" functions -- cf Coquand's "Infinite Objects in Type Theory".*)
lemma flip_llist_quniv_lemma [rule_format]:
"Ord(i) ==> \<forall>l \<in> llist(bool). flip(l) Int Vset(i) \<subseteq> univ(eclose(bool))"
apply (erule trans_induct)
apply (rule ballI)
apply (erule llist.cases, simp_all)
apply (simp_all add: QInl_def QInr_def llist.con_defs)
(*LCons case: I simply can't get rid of the deepen_tac*)
apply (deepen 2 intro: Ord_trans Int_lower1 [THEN subset_trans])
done
lemma flip_in_quniv: "l \<in> llist(bool) ==> flip(l) \<in> quniv(bool)"
by (rule flip_llist_quniv_lemma [THEN Int_Vset_subset, THEN qunivI], assumption+)
lemma flip_type: "l \<in> llist(bool) ==> flip(l): llist(bool)"
apply (rule_tac X = "{flip (l) . l \<in> llist (bool) }" in llist.coinduct)
apply blast
apply (fast intro!: flip_in_quniv)
apply (erule RepFunE)
apply (erule_tac a=la in llist.cases, auto)
done
lemma flip_flip: "l \<in> llist(bool) ==> flip(flip(l)) = l"
apply (rule_tac X1 = "{<flip (flip (l)),l> . l \<in> llist (bool) }" in
lleq.coinduct [THEN lleq_implies_equal])
apply blast
apply (fast intro!: flip_type)
apply (erule RepFunE)
apply (erule_tac a=la in llist.cases)
apply (simp_all add: flip_type not_not)
done
end