(* Title: ZF/ex/TF.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Trees & forests, a mutually recursive type definition.
*)
TF_Fn = TF + ListFn +
consts
TF_rec :: "[i, [i,i,i]=>i, i, [i,i,i,i]=>i] => i"
TF_map :: "[i=>i, i] => i"
TF_size :: "i=>i"
TF_preorder :: "i=>i"
list_of_TF :: "i=>i"
TF_of_list :: "i=>i"
rules
TF_rec_def
"TF_rec(z,b,c,d) == Vrec(z, \
\ %z r. tree_forest_case(%x f. b(x, f, r`f), \
\ c, \
\ %t f. d(t, f, r`t, r`f), z))"
list_of_TF_def
"list_of_TF(z) == TF_rec(z, %x f r. [Tcons(x,f)], [], \
\ %t f r1 r2. Cons(t, r2))"
TF_of_list_def
"TF_of_list(f) == list_rec(f, Fnil, %t f r. Fcons(t,r))"
TF_map_def
"TF_map(h,z) == TF_rec(z, %x f r.Tcons(h(x),r), Fnil, \
\ %t f r1 r2. Fcons(r1,r2))"
TF_size_def
"TF_size(z) == TF_rec(z, %x f r.succ(r), 0, %t f r1 r2. r1#+r2)"
TF_preorder_def
"TF_preorder(z) == TF_rec(z, %x f r.Cons(x,r), Nil, %t f r1 r2. r1@r2)"
end