(* Title: HOL/Library/Extended_Real.thy
Author: Johannes Hölzl, TU München
Author: Robert Himmelmann, TU München
Author: Armin Heller, TU München
Author: Bogdan Grechuk, University of Edinburgh
*)
header {* Extended real number line *}
theory Extended_Real
imports "~~/src/HOL/Complex_Main" Extended_Nat
begin
lemma LIMSEQ_SUP:
fixes X :: "nat \<Rightarrow> 'a :: {complete_linorder, linorder_topology}"
assumes "incseq X"
shows "X ----> (SUP i. X i)"
using `incseq X`
by (intro increasing_tendsto)
(auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans)
lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P"
by (cases P) (simp_all add: eventually_False)
lemma (in complete_lattice) Inf_le_Sup:
assumes "A \<noteq> {}" shows "Inf A \<le> Sup A"
proof -
from `A \<noteq> {}` obtain x where "x \<in> A" by auto
then show ?thesis
by (metis Sup_upper2 Inf_lower)
qed
lemma (in complete_lattice) INF_le_SUP:
"A \<noteq> {} \<Longrightarrow> INFI A f \<le> SUPR A f"
unfolding INF_def SUP_def by (rule Inf_le_Sup) auto
text {*
For more lemmas about the extended real numbers go to
@{file "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy"}
*}
lemma (in complete_lattice) Sup_eqI:
assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x"
assumes "\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y"
shows "Sup A = x"
by (metis antisym Sup_least Sup_upper assms)
lemma (in complete_lattice) Inf_eqI:
assumes "\<And>i. i \<in> A \<Longrightarrow> x \<le> i"
assumes "\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x"
shows "Inf A = x"
by (metis antisym Inf_greatest Inf_lower assms)
lemma (in complete_lattice) SUP_eqI:
"(\<And>i. i \<in> A \<Longrightarrow> f i \<le> x) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> (SUP i:A. f i) = x"
unfolding SUP_def by (rule Sup_eqI) auto
lemma (in complete_lattice) INF_eqI:
"(\<And>i. i \<in> A \<Longrightarrow> x \<le> f i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<ge> y) \<Longrightarrow> x \<ge> y) \<Longrightarrow> (INF i:A. f i) = x"
unfolding INF_def by (rule Inf_eqI) auto
lemma (in complete_lattice) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
proof
assume "{x..} = UNIV"
show "x = bot"
proof (rule ccontr)
assume "x \<noteq> bot" then have "bot \<notin> {x..}" by (simp add: le_less)
then show False using `{x..} = UNIV` by simp
qed
qed auto
lemma SUPR_pair:
"(SUP i : A. SUP j : B. f i j) = (SUP p : A \<times> B. f (fst p) (snd p))"
by (rule antisym) (auto intro!: SUP_least SUP_upper2)
lemma INFI_pair:
"(INF i : A. INF j : B. f i j) = (INF p : A \<times> B. f (fst p) (snd p))"
by (rule antisym) (auto intro!: INF_greatest INF_lower2)
subsection {* Definition and basic properties *}
datatype ereal = ereal real | PInfty | MInfty
instantiation ereal :: uminus
begin
fun uminus_ereal where
"- (ereal r) = ereal (- r)"
| "- PInfty = MInfty"
| "- MInfty = PInfty"
instance ..
end
instantiation ereal :: infinity
begin
definition "(\<infinity>::ereal) = PInfty"
instance ..
end
declare [[coercion "ereal :: real \<Rightarrow> ereal"]]
lemma ereal_uminus_uminus[simp]:
fixes a :: ereal shows "- (- a) = a"
by (cases a) simp_all
lemma
shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>"
and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>"
and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)"
and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r"
and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r"
and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y"
and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z"
by (simp_all add: infinity_ereal_def)
declare
PInfty_eq_infinity[code_post]
MInfty_eq_minfinity[code_post]
lemma [code_unfold]:
"\<infinity> = PInfty"
"-PInfty = MInfty"
by simp_all
lemma inj_ereal[simp]: "inj_on ereal A"
unfolding inj_on_def by auto
lemma ereal_cases[case_names real PInf MInf, cases type: ereal]:
assumes "\<And>r. x = ereal r \<Longrightarrow> P"
assumes "x = \<infinity> \<Longrightarrow> P"
assumes "x = -\<infinity> \<Longrightarrow> P"
shows P
using assms by (cases x) auto
lemmas ereal2_cases = ereal_cases[case_product ereal_cases]
lemmas ereal3_cases = ereal2_cases[case_product ereal_cases]
lemma ereal_uminus_eq_iff[simp]:
fixes a b :: ereal shows "-a = -b \<longleftrightarrow> a = b"
by (cases rule: ereal2_cases[of a b]) simp_all
function of_ereal :: "ereal \<Rightarrow> real" where
"of_ereal (ereal r) = r" |
"of_ereal \<infinity> = 0" |
"of_ereal (-\<infinity>) = 0"
by (auto intro: ereal_cases)
termination proof qed (rule wf_empty)
defs (overloaded)
real_of_ereal_def [code_unfold]: "real \<equiv> of_ereal"
lemma real_of_ereal[simp]:
"real (- x :: ereal) = - (real x)"
"real (ereal r) = r"
"real (\<infinity>::ereal) = 0"
by (cases x) (simp_all add: real_of_ereal_def)
lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
proof safe
fix x assume "x \<notin> range ereal" "x \<noteq> \<infinity>"
then show "x = -\<infinity>" by (cases x) auto
qed auto
lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)"
proof safe
fix x :: ereal show "x \<in> range uminus" by (intro image_eqI[of _ _ "-x"]) auto
qed auto
instantiation ereal :: abs
begin
function abs_ereal where
"\<bar>ereal r\<bar> = ereal \<bar>r\<bar>"
| "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"
| "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"
by (auto intro: ereal_cases)
termination proof qed (rule wf_empty)
instance ..
end
lemma abs_eq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> = \<infinity> ; x = \<infinity> \<Longrightarrow> P ; x = -\<infinity> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
by (cases x) auto
lemma abs_neq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> \<noteq> \<infinity> ; \<And>r. x = ereal r \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
by (cases x) auto
lemma abs_ereal_uminus[simp]: "\<bar>- x\<bar> = \<bar>x::ereal\<bar>"
by (cases x) auto
lemma ereal_infinity_cases: "(a::ereal) \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>"
by auto
subsubsection "Addition"
instantiation ereal :: comm_monoid_add
begin
definition "0 = ereal 0"
function plus_ereal where
"ereal r + ereal p = ereal (r + p)" |
"\<infinity> + a = (\<infinity>::ereal)" |
"a + \<infinity> = (\<infinity>::ereal)" |
"ereal r + -\<infinity> = - \<infinity>" |
"-\<infinity> + ereal p = -(\<infinity>::ereal)" |
"-\<infinity> + -\<infinity> = -(\<infinity>::ereal)"
proof -
case (goal1 P x)
moreover then obtain a b where "x = (a, b)" by (cases x) auto
ultimately show P
by (cases rule: ereal2_cases[of a b]) auto
qed auto
termination proof qed (rule wf_empty)
lemma Infty_neq_0[simp]:
"(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)"
"-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)"
by (simp_all add: zero_ereal_def)
lemma ereal_eq_0[simp]:
"ereal r = 0 \<longleftrightarrow> r = 0"
"0 = ereal r \<longleftrightarrow> r = 0"
unfolding zero_ereal_def by simp_all
instance
proof
fix a b c :: ereal
show "0 + a = a"
by (cases a) (simp_all add: zero_ereal_def)
show "a + b = b + a"
by (cases rule: ereal2_cases[of a b]) simp_all
show "a + b + c = a + (b + c)"
by (cases rule: ereal3_cases[of a b c]) simp_all
qed
end
lemma real_of_ereal_0[simp]: "real (0::ereal) = 0"
unfolding real_of_ereal_def zero_ereal_def by simp
lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)"
unfolding zero_ereal_def abs_ereal.simps by simp
lemma ereal_uminus_zero[simp]:
"- 0 = (0::ereal)"
by (simp add: zero_ereal_def)
lemma ereal_uminus_zero_iff[simp]:
fixes a :: ereal shows "-a = 0 \<longleftrightarrow> a = 0"
by (cases a) simp_all
lemma ereal_plus_eq_PInfty[simp]:
fixes a b :: ereal shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_plus_eq_MInfty[simp]:
fixes a b :: ereal shows "a + b = -\<infinity> \<longleftrightarrow>
(a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_add_cancel_left:
fixes a b :: ereal assumes "a \<noteq> -\<infinity>"
shows "a + b = a + c \<longleftrightarrow> (a = \<infinity> \<or> b = c)"
using assms by (cases rule: ereal3_cases[of a b c]) auto
lemma ereal_add_cancel_right:
fixes a b :: ereal assumes "a \<noteq> -\<infinity>"
shows "b + a = c + a \<longleftrightarrow> (a = \<infinity> \<or> b = c)"
using assms by (cases rule: ereal3_cases[of a b c]) auto
lemma ereal_real:
"ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)"
by (cases x) simp_all
lemma real_of_ereal_add:
fixes a b :: ereal
shows "real (a + b) =
(if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)"
by (cases rule: ereal2_cases[of a b]) auto
subsubsection "Linear order on @{typ ereal}"
instantiation ereal :: linorder
begin
function less_ereal
where
" ereal x < ereal y \<longleftrightarrow> x < y"
| "(\<infinity>::ereal) < a \<longleftrightarrow> False"
| " a < -(\<infinity>::ereal) \<longleftrightarrow> False"
| "ereal x < \<infinity> \<longleftrightarrow> True"
| " -\<infinity> < ereal r \<longleftrightarrow> True"
| " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True"
proof -
case (goal1 P x)
moreover then obtain a b where "x = (a,b)" by (cases x) auto
ultimately show P by (cases rule: ereal2_cases[of a b]) auto
qed simp_all
termination by (relation "{}") simp
definition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y"
lemma ereal_infty_less[simp]:
fixes x :: ereal
shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)"
"-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)"
by (cases x, simp_all) (cases x, simp_all)
lemma ereal_infty_less_eq[simp]:
fixes x :: ereal
shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>"
"x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>"
by (auto simp add: less_eq_ereal_def)
lemma ereal_less[simp]:
"ereal r < 0 \<longleftrightarrow> (r < 0)"
"0 < ereal r \<longleftrightarrow> (0 < r)"
"0 < (\<infinity>::ereal)"
"-(\<infinity>::ereal) < 0"
by (simp_all add: zero_ereal_def)
lemma ereal_less_eq[simp]:
"x \<le> (\<infinity>::ereal)"
"-(\<infinity>::ereal) \<le> x"
"ereal r \<le> ereal p \<longleftrightarrow> r \<le> p"
"ereal r \<le> 0 \<longleftrightarrow> r \<le> 0"
"0 \<le> ereal r \<longleftrightarrow> 0 \<le> r"
by (auto simp add: less_eq_ereal_def zero_ereal_def)
lemma ereal_infty_less_eq2:
"a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)"
"a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)"
by simp_all
instance
proof
fix x y z :: ereal
show "x \<le> x"
by (cases x) simp_all
show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
by (cases rule: ereal2_cases[of x y]) auto
show "x \<le> y \<or> y \<le> x "
by (cases rule: ereal2_cases[of x y]) auto
{ assume "x \<le> y" "y \<le> x" then show "x = y"
by (cases rule: ereal2_cases[of x y]) auto }
{ assume "x \<le> y" "y \<le> z" then show "x \<le> z"
by (cases rule: ereal3_cases[of x y z]) auto }
qed
end
instance ereal :: ordered_ab_semigroup_add
proof
fix a b c :: ereal assume "a \<le> b" then show "c + a \<le> c + b"
by (cases rule: ereal3_cases[of a b c]) auto
qed
lemma real_of_ereal_positive_mono:
fixes x y :: ereal shows "\<lbrakk>0 \<le> x; x \<le> y; y \<noteq> \<infinity>\<rbrakk> \<Longrightarrow> real x \<le> real y"
by (cases rule: ereal2_cases[of x y]) auto
lemma ereal_MInfty_lessI[intro, simp]:
fixes a :: ereal shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a"
by (cases a) auto
lemma ereal_less_PInfty[intro, simp]:
fixes a :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>"
by (cases a) auto
lemma ereal_less_ereal_Ex:
fixes a b :: ereal
shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)"
by (cases x) auto
lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))"
proof (cases x)
case (real r) then show ?thesis
using reals_Archimedean2[of r] by simp
qed simp_all
lemma ereal_add_mono:
fixes a b c d :: ereal assumes "a \<le> b" "c \<le> d" shows "a + c \<le> b + d"
using assms
apply (cases a)
apply (cases rule: ereal3_cases[of b c d], auto)
apply (cases rule: ereal3_cases[of b c d], auto)
done
lemma ereal_minus_le_minus[simp]:
fixes a b :: ereal shows "- a \<le> - b \<longleftrightarrow> b \<le> a"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_minus_less_minus[simp]:
fixes a b :: ereal shows "- a < - b \<longleftrightarrow> b < a"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_le_real_iff:
"x \<le> real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0))"
by (cases y) auto
lemma real_le_ereal_iff:
"real y \<le> x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x))"
by (cases y) auto
lemma ereal_less_real_iff:
"x < real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0))"
by (cases y) auto
lemma real_less_ereal_iff:
"real y < x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x))"
by (cases y) auto
lemma real_of_ereal_pos:
fixes x :: ereal shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto
lemmas real_of_ereal_ord_simps =
ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff
lemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x"
by (cases x) auto
lemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x"
by (cases x) auto
lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>"
by (cases x) auto
lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> (x \<le> 0 \<or> x = \<infinity>)"
by (cases x) auto
lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>"
by (cases x) auto
lemma zero_less_real_of_ereal:
fixes x :: ereal shows "0 < real x \<longleftrightarrow> (0 < x \<and> x \<noteq> \<infinity>)"
by (cases x) auto
lemma ereal_0_le_uminus_iff[simp]:
fixes a :: ereal shows "0 \<le> -a \<longleftrightarrow> a \<le> 0"
by (cases rule: ereal2_cases[of a]) auto
lemma ereal_uminus_le_0_iff[simp]:
fixes a :: ereal shows "-a \<le> 0 \<longleftrightarrow> 0 \<le> a"
by (cases rule: ereal2_cases[of a]) auto
lemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y"
using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) auto
lemma ereal_dense:
fixes x y :: ereal assumes "x < y"
shows "\<exists>z. x < z \<and> z < y"
using ereal_dense2[OF `x < y`] by blast
lemma ereal_add_strict_mono:
fixes a b c d :: ereal
assumes "a = b" "0 \<le> a" "a \<noteq> \<infinity>" "c < d"
shows "a + c < b + d"
using assms by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto
lemma ereal_less_add:
fixes a b c :: ereal shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b"
by (cases rule: ereal2_cases[of b c]) auto
lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" by auto
lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)"
by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus)
lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)"
by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus)
lemmas ereal_uminus_reorder =
ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder
lemma ereal_bot:
fixes x :: ereal assumes "\<And>B. x \<le> ereal B" shows "x = - \<infinity>"
proof (cases x)
case (real r) with assms[of "r - 1"] show ?thesis by auto
next
case PInf with assms[of 0] show ?thesis by auto
next
case MInf then show ?thesis by simp
qed
lemma ereal_top:
fixes x :: ereal assumes "\<And>B. x \<ge> ereal B" shows "x = \<infinity>"
proof (cases x)
case (real r) with assms[of "r + 1"] show ?thesis by auto
next
case MInf with assms[of 0] show ?thesis by auto
next
case PInf then show ?thesis by simp
qed
lemma
shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)"
and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)"
by (simp_all add: min_def max_def)
lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)"
by (auto simp: zero_ereal_def)
lemma
fixes f :: "nat \<Rightarrow> ereal"
shows incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f"
and decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f"
unfolding decseq_def incseq_def by auto
lemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))"
unfolding incseq_def by auto
lemma ereal_add_nonneg_nonneg:
fixes a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b"
using add_mono[of 0 a 0 b] by simp
lemma image_eqD: "f ` A = B \<Longrightarrow> (\<forall>x\<in>A. f x \<in> B)"
by auto
lemma incseq_setsumI:
fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
assumes "\<And>i. 0 \<le> f i"
shows "incseq (\<lambda>i. setsum f {..< i})"
proof (intro incseq_SucI)
fix n have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
using assms by (rule add_left_mono)
then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
by auto
qed
lemma incseq_setsumI2:
fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"
shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)"
using assms unfolding incseq_def by (auto intro: setsum_mono)
subsubsection "Multiplication"
instantiation ereal :: "{comm_monoid_mult, sgn}"
begin
definition "1 = ereal 1"
function sgn_ereal where
"sgn (ereal r) = ereal (sgn r)"
| "sgn (\<infinity>::ereal) = 1"
| "sgn (-\<infinity>::ereal) = -1"
by (auto intro: ereal_cases)
termination proof qed (rule wf_empty)
function times_ereal where
"ereal r * ereal p = ereal (r * p)" |
"ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" |
"\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" |
"ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" |
"-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" |
"(\<infinity>::ereal) * \<infinity> = \<infinity>" |
"-(\<infinity>::ereal) * \<infinity> = -\<infinity>" |
"(\<infinity>::ereal) * -\<infinity> = -\<infinity>" |
"-(\<infinity>::ereal) * -\<infinity> = \<infinity>"
proof -
case (goal1 P x)
moreover then obtain a b where "x = (a, b)" by (cases x) auto
ultimately show P by (cases rule: ereal2_cases[of a b]) auto
qed simp_all
termination by (relation "{}") simp
instance
proof
fix a b c :: ereal show "1 * a = a"
by (cases a) (simp_all add: one_ereal_def)
show "a * b = b * a"
by (cases rule: ereal2_cases[of a b]) simp_all
show "a * b * c = a * (b * c)"
by (cases rule: ereal3_cases[of a b c])
(simp_all add: zero_ereal_def zero_less_mult_iff)
qed
end
lemma real_ereal_1[simp]: "real (1::ereal) = 1"
unfolding one_ereal_def by simp
lemma real_of_ereal_le_1:
fixes a :: ereal shows "a \<le> 1 \<Longrightarrow> real a \<le> 1"
by (cases a) (auto simp: one_ereal_def)
lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)"
unfolding one_ereal_def by simp
lemma ereal_mult_zero[simp]:
fixes a :: ereal shows "a * 0 = 0"
by (cases a) (simp_all add: zero_ereal_def)
lemma ereal_zero_mult[simp]:
fixes a :: ereal shows "0 * a = 0"
by (cases a) (simp_all add: zero_ereal_def)
lemma ereal_m1_less_0[simp]:
"-(1::ereal) < 0"
by (simp add: zero_ereal_def one_ereal_def)
lemma ereal_zero_m1[simp]:
"1 \<noteq> (0::ereal)"
by (simp add: zero_ereal_def one_ereal_def)
lemma ereal_times_0[simp]:
fixes x :: ereal shows "0 * x = 0"
by (cases x) (auto simp: zero_ereal_def)
lemma ereal_times[simp]:
"1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1"
"1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1"
by (auto simp add: times_ereal_def one_ereal_def)
lemma ereal_plus_1[simp]:
"1 + ereal r = ereal (r + 1)" "ereal r + 1 = ereal (r + 1)"
"1 + -(\<infinity>::ereal) = -\<infinity>" "-(\<infinity>::ereal) + 1 = -\<infinity>"
unfolding one_ereal_def by auto
lemma ereal_zero_times[simp]:
fixes a b :: ereal shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_mult_eq_PInfty[simp]:
shows "a * b = (\<infinity>::ereal) \<longleftrightarrow>
(a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_mult_eq_MInfty[simp]:
shows "a * b = -(\<infinity>::ereal) \<longleftrightarrow>
(a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_0_less_1[simp]: "0 < (1::ereal)"
by (simp_all add: zero_ereal_def one_ereal_def)
lemma ereal_zero_one[simp]: "0 \<noteq> (1::ereal)"
by (simp_all add: zero_ereal_def one_ereal_def)
lemma ereal_mult_minus_left[simp]:
fixes a b :: ereal shows "-a * b = - (a * b)"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_mult_minus_right[simp]:
fixes a b :: ereal shows "a * -b = - (a * b)"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_mult_infty[simp]:
"a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)"
by (cases a) auto
lemma ereal_infty_mult[simp]:
"(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)"
by (cases a) auto
lemma ereal_mult_strict_right_mono:
assumes "a < b" and "0 < c" "c < (\<infinity>::ereal)"
shows "a * c < b * c"
using assms
by (cases rule: ereal3_cases[of a b c])
(auto simp: zero_le_mult_iff)
lemma ereal_mult_strict_left_mono:
"\<lbrakk> a < b ; 0 < c ; c < (\<infinity>::ereal)\<rbrakk> \<Longrightarrow> c * a < c * b"
using ereal_mult_strict_right_mono by (simp add: mult_commute[of c])
lemma ereal_mult_right_mono:
fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> a*c \<le> b*c"
using assms
apply (cases "c = 0") apply simp
by (cases rule: ereal3_cases[of a b c])
(auto simp: zero_le_mult_iff)
lemma ereal_mult_left_mono:
fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> c * a \<le> c * b"
using ereal_mult_right_mono by (simp add: mult_commute[of c])
lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)"
by (simp add: one_ereal_def zero_ereal_def)
lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)"
by (cases rule: ereal2_cases[of a b]) (auto simp: mult_nonneg_nonneg)
lemma ereal_right_distrib:
fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b"
by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)
lemma ereal_left_distrib:
fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r"
by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)
lemma ereal_mult_le_0_iff:
fixes a b :: ereal
shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)"
by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff)
lemma ereal_zero_le_0_iff:
fixes a b :: ereal
shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)"
by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff)
lemma ereal_mult_less_0_iff:
fixes a b :: ereal
shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)"
by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff)
lemma ereal_zero_less_0_iff:
fixes a b :: ereal
shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)"
by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff)
lemma ereal_left_mult_cong:
fixes a b c :: ereal
shows "(c \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> c * a = c * b"
by (cases "c = 0") simp_all
lemma ereal_right_mult_cong:
fixes a b c :: ereal
shows "(c \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> a * c = b * c"
by (cases "c = 0") simp_all
lemma ereal_distrib:
fixes a b c :: ereal
assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" "\<bar>c\<bar> \<noteq> \<infinity>"
shows "(a + b) * c = a * c + b * c"
using assms
by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)
instance ereal :: numeral ..
lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)"
apply (induct w rule: num_induct)
apply (simp only: numeral_One one_ereal_def)
apply (simp only: numeral_inc ereal_plus_1)
done
lemma ereal_le_epsilon:
fixes x y :: ereal
assumes "ALL e. 0 < e --> x <= y + e"
shows "x <= y"
proof-
{ assume a: "EX r. y = ereal r"
then obtain r where r_def: "y = ereal r" by auto
{ assume "x=(-\<infinity>)" hence ?thesis by auto }
moreover
{ assume "~(x=(-\<infinity>))"
then obtain p where p_def: "x = ereal p"
using a assms[rule_format, of 1] by (cases x) auto
{ fix e have "0 < e --> p <= r + e"
using assms[rule_format, of "ereal e"] p_def r_def by auto }
hence "p <= r" apply (subst field_le_epsilon) by auto
hence ?thesis using r_def p_def by auto
} ultimately have ?thesis by blast
}
moreover
{ assume "y=(-\<infinity>) | y=\<infinity>" hence ?thesis
using assms[rule_format, of 1] by (cases x) auto
} ultimately show ?thesis by (cases y) auto
qed
lemma ereal_le_epsilon2:
fixes x y :: ereal
assumes "ALL e. 0 < e --> x <= y + ereal e"
shows "x <= y"
proof-
{ fix e :: ereal assume "e>0"
{ assume "e=\<infinity>" hence "x<=y+e" by auto }
moreover
{ assume "e~=\<infinity>"
then obtain r where "e = ereal r" using `e>0` apply (cases e) by auto
hence "x<=y+e" using assms[rule_format, of r] `e>0` by auto
} ultimately have "x<=y+e" by blast
} then show ?thesis using ereal_le_epsilon by auto
qed
lemma ereal_le_real:
fixes x y :: ereal
assumes "ALL z. x <= ereal z --> y <= ereal z"
shows "y <= x"
by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases)
lemma ereal_le_ereal:
fixes x y :: ereal
assumes "\<And>B. B < x \<Longrightarrow> B <= y"
shows "x <= y"
by (metis assms ereal_dense leD linorder_le_less_linear)
lemma ereal_ge_ereal:
fixes x y :: ereal
assumes "ALL B. B>x --> B >= y"
shows "x >= y"
by (metis assms ereal_dense leD linorder_le_less_linear)
lemma setprod_ereal_0:
fixes f :: "'a \<Rightarrow> ereal"
shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> (finite A \<and> (\<exists>i\<in>A. f i = 0))"
proof cases
assume "finite A"
then show ?thesis by (induct A) auto
qed auto
lemma setprod_ereal_pos:
fixes f :: "'a \<Rightarrow> ereal" assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" shows "0 \<le> (\<Prod>i\<in>I. f i)"
proof cases
assume "finite I" from this pos show ?thesis by induct auto
qed simp
lemma setprod_PInf:
fixes f :: "'a \<Rightarrow> ereal"
assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"
shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)"
proof cases
assume "finite I" from this assms show ?thesis
proof (induct I)
case (insert i I)
then have pos: "0 \<le> f i" "0 \<le> setprod f I" by (auto intro!: setprod_ereal_pos)
from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" by auto
also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0"
using setprod_ereal_pos[of I f] pos
by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto
also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)"
using insert by (auto simp: setprod_ereal_0)
finally show ?case .
qed simp
qed simp
lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)"
proof cases
assume "finite A" then show ?thesis
by induct (auto simp: one_ereal_def)
qed (simp add: one_ereal_def)
subsubsection {* Power *}
lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)"
by (induct n) (auto simp: one_ereal_def)
lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)"
by (induct n) (auto simp: one_ereal_def)
lemma ereal_power_uminus[simp]:
fixes x :: ereal
shows "(- x) ^ n = (if even n then x ^ n else - (x^n))"
by (induct n) (auto simp: one_ereal_def)
lemma ereal_power_numeral[simp]:
"(numeral num :: ereal) ^ n = ereal (numeral num ^ n)"
by (induct n) (auto simp: one_ereal_def)
lemma zero_le_power_ereal[simp]:
fixes a :: ereal assumes "0 \<le> a"
shows "0 \<le> a ^ n"
using assms by (induct n) (auto simp: ereal_zero_le_0_iff)
subsubsection {* Subtraction *}
lemma ereal_minus_minus_image[simp]:
fixes S :: "ereal set"
shows "uminus ` uminus ` S = S"
by (auto simp: image_iff)
lemma ereal_uminus_lessThan[simp]:
fixes a :: ereal shows "uminus ` {..<a} = {-a<..}"
proof -
{
fix x assume "-a < x"
then have "- x < - (- a)" by (simp del: ereal_uminus_uminus)
then have "- x < a" by simp
}
then show ?thesis by (auto intro!: image_eqI)
qed
lemma ereal_uminus_greaterThan[simp]:
"uminus ` {(a::ereal)<..} = {..<-a}"
by (metis ereal_uminus_lessThan ereal_uminus_uminus
ereal_minus_minus_image)
instantiation ereal :: minus
begin
definition "x - y = x + -(y::ereal)"
instance ..
end
lemma ereal_minus[simp]:
"ereal r - ereal p = ereal (r - p)"
"-\<infinity> - ereal r = -\<infinity>"
"ereal r - \<infinity> = -\<infinity>"
"(\<infinity>::ereal) - x = \<infinity>"
"-(\<infinity>::ereal) - \<infinity> = -\<infinity>"
"x - -y = x + y"
"x - 0 = x"
"0 - x = -x"
by (simp_all add: minus_ereal_def)
lemma ereal_x_minus_x[simp]:
"x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)"
by (cases x) simp_all
lemma ereal_eq_minus_iff:
fixes x y z :: ereal
shows "x = z - y \<longleftrightarrow>
(\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and>
(y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and>
(y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and>
(y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)"
by (cases rule: ereal3_cases[of x y z]) auto
lemma ereal_eq_minus:
fixes x y z :: ereal
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z"
by (auto simp: ereal_eq_minus_iff)
lemma ereal_less_minus_iff:
fixes x y z :: ereal
shows "x < z - y \<longleftrightarrow>
(y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and>
(y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and>
(\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)"
by (cases rule: ereal3_cases[of x y z]) auto
lemma ereal_less_minus:
fixes x y z :: ereal
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z"
by (auto simp: ereal_less_minus_iff)
lemma ereal_le_minus_iff:
fixes x y z :: ereal
shows "x \<le> z - y \<longleftrightarrow>
(y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and>
(\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)"
by (cases rule: ereal3_cases[of x y z]) auto
lemma ereal_le_minus:
fixes x y z :: ereal
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z"
by (auto simp: ereal_le_minus_iff)
lemma ereal_minus_less_iff:
fixes x y z :: ereal
shows "x - y < z \<longleftrightarrow>
y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and>
(y \<noteq> \<infinity> \<longrightarrow> x < z + y)"
by (cases rule: ereal3_cases[of x y z]) auto
lemma ereal_minus_less:
fixes x y z :: ereal
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y"
by (auto simp: ereal_minus_less_iff)
lemma ereal_minus_le_iff:
fixes x y z :: ereal
shows "x - y \<le> z \<longleftrightarrow>
(y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and>
(y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and>
(\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)"
by (cases rule: ereal3_cases[of x y z]) auto
lemma ereal_minus_le:
fixes x y z :: ereal
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y"
by (auto simp: ereal_minus_le_iff)
lemma ereal_minus_eq_minus_iff:
fixes a b c :: ereal
shows "a - b = a - c \<longleftrightarrow>
b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)"
by (cases rule: ereal3_cases[of a b c]) auto
lemma ereal_add_le_add_iff:
fixes a b c :: ereal
shows "c + a \<le> c + b \<longleftrightarrow>
a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)"
by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)
lemma ereal_mult_le_mult_iff:
fixes a b c :: ereal
shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left)
lemma ereal_minus_mono:
fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C"
shows "A - C \<le> B - D"
using assms
by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all
lemma real_of_ereal_minus:
fixes a b :: ereal
shows "real (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real a - real b)"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_diff_positive:
fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_between:
fixes x e :: ereal
assumes "\<bar>x\<bar> \<noteq> \<infinity>" "0 < e"
shows "x - e < x" "x < x + e"
using assms apply (cases x, cases e) apply auto
using assms apply (cases x, cases e) apply auto
done
lemma ereal_minus_eq_PInfty_iff:
fixes x y :: ereal shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>"
by (cases x y rule: ereal2_cases) simp_all
subsubsection {* Division *}
instantiation ereal :: inverse
begin
function inverse_ereal where
"inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" |
"inverse (\<infinity>::ereal) = 0" |
"inverse (-\<infinity>::ereal) = 0"
by (auto intro: ereal_cases)
termination by (relation "{}") simp
definition "x / y = x * inverse (y :: ereal)"
instance ..
end
lemma real_of_ereal_inverse[simp]:
fixes a :: ereal
shows "real (inverse a) = 1 / real a"
by (cases a) (auto simp: inverse_eq_divide)
lemma ereal_inverse[simp]:
"inverse (0::ereal) = \<infinity>"
"inverse (1::ereal) = 1"
by (simp_all add: one_ereal_def zero_ereal_def)
lemma ereal_divide[simp]:
"ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))"
unfolding divide_ereal_def by (auto simp: divide_real_def)
lemma ereal_divide_same[simp]:
fixes x :: ereal shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)"
by (cases x)
(simp_all add: divide_real_def divide_ereal_def one_ereal_def)
lemma ereal_inv_inv[simp]:
fixes x :: ereal shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)"
by (cases x) auto
lemma ereal_inverse_minus[simp]:
fixes x :: ereal shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)"
by (cases x) simp_all
lemma ereal_uminus_divide[simp]:
fixes x y :: ereal shows "- x / y = - (x / y)"
unfolding divide_ereal_def by simp
lemma ereal_divide_Infty[simp]:
fixes x :: ereal shows "x / \<infinity> = 0" "x / -\<infinity> = 0"
unfolding divide_ereal_def by simp_all
lemma ereal_divide_one[simp]:
"x / 1 = (x::ereal)"
unfolding divide_ereal_def by simp
lemma ereal_divide_ereal[simp]:
"\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)"
unfolding divide_ereal_def by simp
lemma zero_le_divide_ereal[simp]:
fixes a :: ereal assumes "0 \<le> a" "0 \<le> b"
shows "0 \<le> a / b"
using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff)
lemma ereal_le_divide_pos:
fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z"
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
lemma ereal_divide_le_pos:
fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y"
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
lemma ereal_le_divide_neg:
fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y"
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
lemma ereal_divide_le_neg:
fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z"
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
lemma ereal_inverse_antimono_strict:
fixes x y :: ereal
shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x"
by (cases rule: ereal2_cases[of x y]) auto
lemma ereal_inverse_antimono:
fixes x y :: ereal
shows "0 \<le> x \<Longrightarrow> x <= y \<Longrightarrow> inverse y <= inverse x"
by (cases rule: ereal2_cases[of x y]) auto
lemma inverse_inverse_Pinfty_iff[simp]:
fixes x :: ereal shows "inverse x = \<infinity> \<longleftrightarrow> x = 0"
by (cases x) auto
lemma ereal_inverse_eq_0:
fixes x :: ereal shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>"
by (cases x) auto
lemma ereal_0_gt_inverse:
fixes x :: ereal shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x"
by (cases x) auto
lemma ereal_mult_less_right:
fixes a b c :: ereal
assumes "b * a < c * a" "0 < a" "a < \<infinity>"
shows "b < c"
using assms
by (cases rule: ereal3_cases[of a b c])
(auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff)
lemma ereal_power_divide:
fixes x y :: ereal shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n"
by (cases rule: ereal2_cases[of x y])
(auto simp: one_ereal_def zero_ereal_def power_divide not_le
power_less_zero_eq zero_le_power_iff)
lemma ereal_le_mult_one_interval:
fixes x y :: ereal
assumes y: "y \<noteq> -\<infinity>"
assumes z: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y"
shows "x \<le> y"
proof (cases x)
case PInf with z[of "1 / 2"] show "x \<le> y" by (simp add: one_ereal_def)
next
case (real r) note r = this
show "x \<le> y"
proof (cases y)
case (real p) note p = this
have "r \<le> p"
proof (rule field_le_mult_one_interval)
fix z :: real assume "0 < z" and "z < 1"
with z[of "ereal z"]
show "z * r \<le> p" using p r by (auto simp: zero_le_mult_iff one_ereal_def)
qed
then show "x \<le> y" using p r by simp
qed (insert y, simp_all)
qed simp
lemma ereal_divide_right_mono[simp]:
fixes x y z :: ereal
assumes "x \<le> y" "0 < z" shows "x / z \<le> y / z"
using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono)
lemma ereal_divide_left_mono[simp]:
fixes x y z :: ereal
assumes "y \<le> x" "0 < z" "0 < x * y"
shows "z / x \<le> z / y"
using assms by (cases x y z rule: ereal3_cases)
(auto intro: divide_left_mono simp: field_simps sign_simps split: split_if_asm)
lemma ereal_divide_zero_left[simp]:
fixes a :: ereal
shows "0 / a = 0"
by (cases a) (auto simp: zero_ereal_def)
lemma ereal_times_divide_eq_left[simp]:
fixes a b c :: ereal
shows "b / c * a = b * a / c"
by (cases a b c rule: ereal3_cases) (auto simp: field_simps sign_simps)
subsection "Complete lattice"
instantiation ereal :: lattice
begin
definition [simp]: "sup x y = (max x y :: ereal)"
definition [simp]: "inf x y = (min x y :: ereal)"
instance by default simp_all
end
instantiation ereal :: complete_lattice
begin
definition "bot = (-\<infinity>::ereal)"
definition "top = (\<infinity>::ereal)"
definition "Sup S = (LEAST z. \<forall>x\<in>S. x \<le> z :: ereal)"
definition "Inf S = (GREATEST z. \<forall>x\<in>S. z \<le> x :: ereal)"
lemma ereal_complete_Sup:
fixes S :: "ereal set" assumes "S \<noteq> {}"
shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)"
proof cases
assume "\<exists>x. \<forall>a\<in>S. a \<le> ereal x"
then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y" by auto
then have "\<infinity> \<notin> S" by force
show ?thesis
proof cases
assume "S = {-\<infinity>}"
then show ?thesis by (auto intro!: exI[of _ "-\<infinity>"])
next
assume "S \<noteq> {-\<infinity>}"
with `S \<noteq> {}` `\<infinity> \<notin> S` obtain x where "x \<in> S - {-\<infinity>}" "x \<noteq> \<infinity>" by auto
with y `\<infinity> \<notin> S` have "\<forall>z\<in>real ` (S - {-\<infinity>}). z \<le> y"
by (auto simp: real_of_ereal_ord_simps)
with complete_real[of "real ` (S - {-\<infinity>})"] `x \<in> S - {-\<infinity>}`
obtain s where s:
"\<forall>y\<in>S - {-\<infinity>}. real y \<le> s" "\<And>z. (\<forall>y\<in>S - {-\<infinity>}. real y \<le> z) \<Longrightarrow> s \<le> z"
by auto
show ?thesis
proof (safe intro!: exI[of _ "ereal s"])
fix z assume "z \<in> S" with `\<infinity> \<notin> S` show "z \<le> ereal s"
proof (cases z)
case (real r)
then show ?thesis
using s(1)[rule_format, of z] `z \<in> S` `z = ereal r` by auto
qed auto
next
fix z assume *: "\<forall>y\<in>S. y \<le> z"
with `S \<noteq> {-\<infinity>}` `S \<noteq> {}` show "ereal s \<le> z"
proof (cases z)
case (real u)
with * have "s \<le> u"
by (intro s(2)[of u]) (auto simp: real_of_ereal_ord_simps)
then show ?thesis using real by simp
qed auto
qed
qed
next
assume *: "\<not> (\<exists>x. \<forall>a\<in>S. a \<le> ereal x)"
show ?thesis
proof (safe intro!: exI[of _ \<infinity>])
fix y assume **: "\<forall>z\<in>S. z \<le> y"
with * show "\<infinity> \<le> y"
proof (cases y)
case MInf with * ** show ?thesis by (force simp: not_le)
qed auto
qed simp
qed
lemma ereal_complete_Inf:
fixes S :: "ereal set" assumes "S ~= {}"
shows "EX x. (ALL y:S. x <= y) & (ALL z. (ALL y:S. z <= y) --> z <= x)"
proof-
def S1 == "uminus ` S"
hence "S1 ~= {}" using assms by auto
then obtain x where x_def: "(ALL y:S1. y <= x) & (ALL z. (ALL y:S1. y <= z) --> x <= z)"
using ereal_complete_Sup[of S1] by auto
{ fix z assume "ALL y:S. z <= y"
hence "ALL y:S1. y <= -z" unfolding S1_def by auto
hence "x <= -z" using x_def by auto
hence "z <= -x"
apply (subst ereal_uminus_uminus[symmetric])
unfolding ereal_minus_le_minus . }
moreover have "(ALL y:S. -x <= y)"
using x_def unfolding S1_def
apply simp
apply (subst (3) ereal_uminus_uminus[symmetric])
unfolding ereal_minus_le_minus by simp
ultimately show ?thesis by auto
qed
lemma ereal_complete_uminus_eq:
fixes S :: "ereal set"
shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z)
\<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)"
by simp (metis ereal_minus_le_minus ereal_uminus_uminus)
lemma ereal_Sup_uminus_image_eq:
fixes S :: "ereal set"
shows "Sup (uminus ` S) = - Inf S"
proof cases
assume "S = {}"
moreover have "(THE x. All (op \<le> x)) = (-\<infinity>::ereal)"
by (rule the_equality) (auto intro!: ereal_bot)
moreover have "(SOME x. \<forall>y. y \<le> x) = (\<infinity>::ereal)"
by (rule some_equality) (auto intro!: ereal_top)
ultimately show ?thesis unfolding Inf_ereal_def Sup_ereal_def
Least_def Greatest_def GreatestM_def by simp
next
assume "S \<noteq> {}"
with ereal_complete_Sup[of "uminus`S"]
obtain x where x: "(\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)"
unfolding ereal_complete_uminus_eq by auto
show "Sup (uminus ` S) = - Inf S"
unfolding Inf_ereal_def Greatest_def GreatestM_def
proof (intro someI2[of _ _ "\<lambda>x. Sup (uminus`S) = - x"])
show "(\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>y. (\<forall>z\<in>S. y \<le> z) \<longrightarrow> y \<le> -x)"
using x .
fix x' assume "(\<forall>y\<in>S. x' \<le> y) \<and> (\<forall>y. (\<forall>z\<in>S. y \<le> z) \<longrightarrow> y \<le> x')"
then have "(\<forall>y\<in>uminus`S. y \<le> - x') \<and> (\<forall>y. (\<forall>z\<in>uminus`S. z \<le> y) \<longrightarrow> - x' \<le> y)"
unfolding ereal_complete_uminus_eq by simp
then show "Sup (uminus ` S) = -x'"
unfolding Sup_ereal_def ereal_uminus_eq_iff
by (intro Least_equality) auto
qed
qed
instance
proof
{ fix x :: ereal and A
show "bot <= x" by (cases x) (simp_all add: bot_ereal_def)
show "x <= top" by (simp add: top_ereal_def) }
{ fix x :: ereal and A assume "x : A"
with ereal_complete_Sup[of A]
obtain s where s: "\<forall>y\<in>A. y <= s" "\<forall>z. (\<forall>y\<in>A. y <= z) \<longrightarrow> s <= z" by auto
hence "x <= s" using `x : A` by auto
also have "... = Sup A" using s unfolding Sup_ereal_def
by (auto intro!: Least_equality[symmetric])
finally show "x <= Sup A" . }
note le_Sup = this
{ fix x :: ereal and A assume *: "!!z. (z : A ==> z <= x)"
show "Sup A <= x"
proof (cases "A = {}")
case True
hence "Sup A = -\<infinity>" unfolding Sup_ereal_def
by (auto intro!: Least_equality)
thus "Sup A <= x" by simp
next
case False
with ereal_complete_Sup[of A]
obtain s where s: "\<forall>y\<in>A. y <= s" "\<forall>z. (\<forall>y\<in>A. y <= z) \<longrightarrow> s <= z" by auto
hence "Sup A = s"
unfolding Sup_ereal_def by (auto intro!: Least_equality)
also have "s <= x" using * s by auto
finally show "Sup A <= x" .
qed }
note Sup_le = this
{ fix x :: ereal and A assume "x \<in> A"
with le_Sup[of "-x" "uminus`A"] show "Inf A \<le> x"
unfolding ereal_Sup_uminus_image_eq by simp }
{ fix x :: ereal and A assume *: "!!z. (z : A ==> x <= z)"
with Sup_le[of "uminus`A" "-x"] show "x \<le> Inf A"
unfolding ereal_Sup_uminus_image_eq by force }
qed
end
instance ereal :: complete_linorder ..
lemma ereal_SUPR_uminus:
fixes f :: "'a => ereal"
shows "(SUP i : R. -(f i)) = -(INF i : R. f i)"
unfolding SUP_def INF_def
using ereal_Sup_uminus_image_eq[of "f`R"]
by (simp add: image_image)
lemma ereal_INFI_uminus:
fixes f :: "'a => ereal"
shows "(INF i : R. -(f i)) = -(SUP i : R. f i)"
using ereal_SUPR_uminus[of _ "\<lambda>x. - f x"] by simp
lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S) = - Sup (S::ereal set)"
using ereal_Sup_uminus_image_eq[of "uminus ` S"] by (simp add: image_image)
lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)"
by (auto intro!: inj_onI)
lemma ereal_image_uminus_shift:
fixes X Y :: "ereal set" shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y"
proof
assume "uminus ` X = Y"
then have "uminus ` uminus ` X = uminus ` Y"
by (simp add: inj_image_eq_iff)
then show "X = uminus ` Y" by (simp add: image_image)
qed (simp add: image_image)
lemma Inf_ereal_iff:
fixes z :: ereal
shows "(!!x. x:X ==> z <= x) ==> (EX x:X. x<y) <-> Inf X < y"
by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower less_le_not_le linear
order_less_le_trans)
lemma Sup_eq_MInfty:
fixes S :: "ereal set" shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
proof
assume a: "Sup S = -\<infinity>"
with complete_lattice_class.Sup_upper[of _ S]
show "S={} \<or> S={-\<infinity>}" by auto
next
assume "S={} \<or> S={-\<infinity>}" then show "Sup S = -\<infinity>"
unfolding Sup_ereal_def by (auto intro!: Least_equality)
qed
lemma Inf_eq_PInfty:
fixes S :: "ereal set" shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
using Sup_eq_MInfty[of "uminus`S"]
unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp
lemma Inf_eq_MInfty:
fixes S :: "ereal set" shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>"
unfolding Inf_ereal_def
by (auto intro!: Greatest_equality)
lemma Sup_eq_PInfty:
fixes S :: "ereal set" shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>"
unfolding Sup_ereal_def
by (auto intro!: Least_equality)
lemma Sup_ereal_close:
fixes e :: ereal
assumes "0 < e" and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
shows "\<exists>x\<in>S. Sup S - e < x"
using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1])
lemma Inf_ereal_close:
fixes e :: ereal assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" "0 < e"
shows "\<exists>x\<in>X. x < Inf X + e"
proof (rule Inf_less_iff[THEN iffD1])
show "Inf X < Inf X + e" using assms
by (cases e) auto
qed
lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>"
proof -
{ fix x ::ereal assume "x \<noteq> \<infinity>"
then have "\<exists>k::nat. x < ereal (real k)"
proof (cases x)
case MInf then show ?thesis by (intro exI[of _ 0]) auto
next
case (real r)
moreover obtain k :: nat where "r < real k"
using ex_less_of_nat by (auto simp: real_eq_of_nat)
ultimately show ?thesis by auto
qed simp }
then show ?thesis
using SUP_eq_top_iff[of UNIV "\<lambda>n::nat. ereal (real n)"]
by (auto simp: top_ereal_def)
qed
lemma ereal_le_Sup:
fixes x :: ereal
shows "(x <= (SUP i:A. f i)) <-> (ALL y. y < x --> (EX i. i : A & y <= f i))"
(is "?lhs <-> ?rhs")
proof-
{ assume "?rhs"
{ assume "~(x <= (SUP i:A. f i))" hence "(SUP i:A. f i)<x" by (simp add: not_le)
then obtain y where y_def: "(SUP i:A. f i)<y & y<x" using ereal_dense by auto
then obtain i where "i : A & y <= f i" using `?rhs` by auto
hence "y <= (SUP i:A. f i)" using SUP_upper[of i A f] by auto
hence False using y_def by auto
} hence "?lhs" by auto
}
moreover
{ assume "?lhs" hence "?rhs"
by (metis less_SUP_iff order_less_imp_le order_less_le_trans)
} ultimately show ?thesis by auto
qed
lemma ereal_Inf_le:
fixes x :: ereal
shows "((INF i:A. f i) <= x) <-> (ALL y. x < y --> (EX i. i : A & f i <= y))"
(is "?lhs <-> ?rhs")
proof-
{ assume "?rhs"
{ assume "~((INF i:A. f i) <= x)" hence "x < (INF i:A. f i)" by (simp add: not_le)
then obtain y where y_def: "x<y & y<(INF i:A. f i)" using ereal_dense by auto
then obtain i where "i : A & f i <= y" using `?rhs` by auto
hence "(INF i:A. f i) <= y" using INF_lower[of i A f] by auto
hence False using y_def by auto
} hence "?lhs" by auto
}
moreover
{ assume "?lhs" hence "?rhs"
by (metis INF_less_iff order_le_less order_less_le_trans)
} ultimately show ?thesis by auto
qed
lemma Inf_less:
fixes x :: ereal
assumes "(INF i:A. f i) < x"
shows "EX i. i : A & f i <= x"
proof(rule ccontr)
assume "~ (EX i. i : A & f i <= x)"
hence "ALL i:A. f i > x" by auto
hence "(INF i:A. f i) >= x" apply (subst INF_greatest) by auto
thus False using assms by auto
qed
lemma same_INF:
assumes "ALL e:A. f e = g e"
shows "(INF e:A. f e) = (INF e:A. g e)"
proof-
have "f ` A = g ` A" unfolding image_def using assms by auto
thus ?thesis unfolding INF_def by auto
qed
lemma same_SUP:
assumes "ALL e:A. f e = g e"
shows "(SUP e:A. f e) = (SUP e:A. g e)"
proof-
have "f ` A = g ` A" unfolding image_def using assms by auto
thus ?thesis unfolding SUP_def by auto
qed
lemma SUPR_eq:
assumes "\<forall>i\<in>A. \<exists>j\<in>B. f i \<le> g j"
assumes "\<forall>j\<in>B. \<exists>i\<in>A. g j \<le> f i"
shows "(SUP i:A. f i) = (SUP j:B. g j)"
proof (intro antisym)
show "(SUP i:A. f i) \<le> (SUP j:B. g j)"
using assms by (metis SUP_least SUP_upper2)
show "(SUP i:B. g i) \<le> (SUP j:A. f j)"
using assms by (metis SUP_least SUP_upper2)
qed
lemma INFI_eq:
assumes "\<forall>i\<in>A. \<exists>j\<in>B. f i \<ge> g j"
assumes "\<forall>j\<in>B. \<exists>i\<in>A. g j \<ge> f i"
shows "(INF i:A. f i) = (INF j:B. g j)"
proof (intro antisym)
show "(INF i:A. f i) \<le> (INF j:B. g j)"
using assms by (metis INF_greatest INF_lower2)
show "(INF i:B. g i) \<le> (INF j:A. f j)"
using assms by (metis INF_greatest INF_lower2)
qed
lemma SUP_ereal_le_addI:
fixes f :: "'i \<Rightarrow> ereal"
assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>"
shows "SUPR UNIV f + y \<le> z"
proof (cases y)
case (real r)
then have "\<And>i. f i \<le> z - y" using assms by (simp add: ereal_le_minus_iff)
then have "SUPR UNIV f \<le> z - y" by (rule SUP_least)
then show ?thesis using real by (simp add: ereal_le_minus_iff)
qed (insert assms, auto)
lemma SUPR_ereal_add:
fixes f g :: "nat \<Rightarrow> ereal"
assumes "incseq f" "incseq g" and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>"
shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"
proof (rule SUP_eqI)
fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y"
have f: "SUPR UNIV f \<noteq> -\<infinity>" using pos
unfolding SUP_def Sup_eq_MInfty by (auto dest: image_eqD)
{ fix j
{ fix i
have "f i + g j \<le> f i + g (max i j)"
using `incseq g`[THEN incseqD] by (rule add_left_mono) auto
also have "\<dots> \<le> f (max i j) + g (max i j)"
using `incseq f`[THEN incseqD] by (rule add_right_mono) auto
also have "\<dots> \<le> y" using * by auto
finally have "f i + g j \<le> y" . }
then have "SUPR UNIV f + g j \<le> y"
using assms(4)[of j] by (intro SUP_ereal_le_addI) auto
then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps) }
then have "SUPR UNIV g + SUPR UNIV f \<le> y"
using f by (rule SUP_ereal_le_addI)
then show "SUPR UNIV f + SUPR UNIV g \<le> y" by (simp add: ac_simps)
qed (auto intro!: add_mono SUP_upper)
lemma SUPR_ereal_add_pos:
fixes f g :: "nat \<Rightarrow> ereal"
assumes inc: "incseq f" "incseq g" and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"
shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"
proof (intro SUPR_ereal_add inc)
fix i show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" using pos[of i] by auto
qed
lemma SUPR_ereal_setsum:
fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal"
assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i"
shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPR UNIV (f n))"
proof cases
assume "finite A" then show ?thesis using assms
by induct (auto simp: incseq_setsumI2 setsum_nonneg SUPR_ereal_add_pos)
qed simp
lemma SUPR_ereal_cmult:
fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" "0 \<le> c"
shows "(SUP i. c * f i) = c * SUPR UNIV f"
proof (rule SUP_eqI)
fix i have "f i \<le> SUPR UNIV f" by (rule SUP_upper) auto
then show "c * f i \<le> c * SUPR UNIV f"
using `0 \<le> c` by (rule ereal_mult_left_mono)
next
fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y"
show "c * SUPR UNIV f \<le> y"
proof cases
assume c: "0 < c \<and> c \<noteq> \<infinity>"
with * have "SUPR UNIV f \<le> y / c"
by (intro SUP_least) (auto simp: ereal_le_divide_pos)
with c show ?thesis
by (auto simp: ereal_le_divide_pos)
next
{ assume "c = \<infinity>" have ?thesis
proof cases
assume "\<forall>i. f i = 0"
moreover then have "range f = {0}" by auto
ultimately show "c * SUPR UNIV f \<le> y" using *
by (auto simp: SUP_def min_max.sup_absorb1)
next
assume "\<not> (\<forall>i. f i = 0)"
then obtain i where "f i \<noteq> 0" by auto
with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis by (auto split: split_if_asm)
qed }
moreover assume "\<not> (0 < c \<and> c \<noteq> \<infinity>)"
ultimately show ?thesis using * `0 \<le> c` by auto
qed
qed
lemma SUP_PInfty:
fixes f :: "'a \<Rightarrow> ereal"
assumes "\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i"
shows "(SUP i:A. f i) = \<infinity>"
unfolding SUP_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def]
apply simp
proof safe
fix x :: ereal assume "x \<noteq> \<infinity>"
show "\<exists>i\<in>A. x < f i"
proof (cases x)
case PInf with `x \<noteq> \<infinity>` show ?thesis by simp
next
case MInf with assms[of "0"] show ?thesis by force
next
case (real r)
with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)" by auto
moreover from assms[of n] guess i ..
ultimately show ?thesis
by (auto intro!: bexI[of _ i])
qed
qed
lemma Sup_countable_SUPR:
assumes "A \<noteq> {}"
shows "\<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> A \<and> Sup A = SUPR UNIV f"
proof (cases "Sup A")
case (real r)
have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"
proof
fix n ::nat have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x"
using assms real by (intro Sup_ereal_close) (auto simp: one_ereal_def)
then guess x ..
then show "\<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"
by (auto intro!: exI[of _ x] simp: ereal_minus_less_iff)
qed
from choice[OF this] guess f .. note f = this
have "SUPR UNIV f = Sup A"
proof (rule SUP_eqI)
fix i show "f i \<le> Sup A" using f
by (auto intro!: complete_lattice_class.Sup_upper)
next
fix y assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y"
show "Sup A \<le> y"
proof (rule ereal_le_epsilon, intro allI impI)
fix e :: ereal assume "0 < e"
show "Sup A \<le> y + e"
proof (cases e)
case (real r)
hence "0 < r" using `0 < e` by auto
then obtain n ::nat where *: "1 / real n < r" "0 < n"
using ex_inverse_of_nat_less by (auto simp: real_eq_of_nat inverse_eq_divide)
have "Sup A \<le> f n + 1 / ereal (real n)" using f[THEN spec, of n]
by auto
also have "1 / ereal (real n) \<le> e" using real * by (auto simp: one_ereal_def )
with bound have "f n + 1 / ereal (real n) \<le> y + e" by (rule add_mono) simp
finally show "Sup A \<le> y + e" .
qed (insert `0 < e`, auto)
qed
qed
with f show ?thesis by (auto intro!: exI[of _ f])
next
case PInf
from `A \<noteq> {}` obtain x where "x \<in> A" by auto
show ?thesis
proof cases
assume "\<infinity> \<in> A"
moreover then have "\<infinity> \<le> Sup A" by (intro complete_lattice_class.Sup_upper)
ultimately show ?thesis by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"])
next
assume "\<infinity> \<notin> A"
have "\<exists>x\<in>A. 0 \<le> x"
by (metis Infty_neq_0 PInf complete_lattice_class.Sup_least ereal_infty_less_eq2 linorder_linear)
then obtain x where "x \<in> A" "0 \<le> x" by auto
have "\<forall>n::nat. \<exists>f. f \<in> A \<and> x + ereal (real n) \<le> f"
proof (rule ccontr)
assume "\<not> ?thesis"
then have "\<exists>n::nat. Sup A \<le> x + ereal (real n)"
by (simp add: Sup_le_iff not_le less_imp_le Ball_def) (metis less_imp_le)
then show False using `x \<in> A` `\<infinity> \<notin> A` PInf
by(cases x) auto
qed
from choice[OF this] guess f .. note f = this
have "SUPR UNIV f = \<infinity>"
proof (rule SUP_PInfty)
fix n :: nat show "\<exists>i\<in>UNIV. ereal (real n) \<le> f i"
using f[THEN spec, of n] `0 \<le> x`
by (cases rule: ereal2_cases[of "f n" x]) (auto intro!: exI[of _ n])
qed
then show ?thesis using f PInf by (auto intro!: exI[of _ f])
qed
next
case MInf
with `A \<noteq> {}` have "A = {-\<infinity>}" by (auto simp: Sup_eq_MInfty)
then show ?thesis using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"])
qed
lemma SUPR_countable_SUPR:
"A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPR A g = SUPR UNIV f"
using Sup_countable_SUPR[of "g`A"] by (auto simp: SUP_def)
lemma Sup_ereal_cadd:
fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
shows "Sup ((\<lambda>x. a + x) ` A) = a + Sup A"
proof (rule antisym)
have *: "\<And>a::ereal. \<And>A. Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A"
by (auto intro!: add_mono complete_lattice_class.Sup_least complete_lattice_class.Sup_upper)
then show "Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" .
show "a + Sup A \<le> Sup ((\<lambda>x. a + x) ` A)"
proof (cases a)
case PInf with `A \<noteq> {}` show ?thesis by (auto simp: image_constant min_max.sup_absorb1)
next
case (real r)
then have **: "op + (- a) ` op + a ` A = A"
by (auto simp: image_iff ac_simps zero_ereal_def[symmetric])
from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis unfolding **
by (cases rule: ereal2_cases[of "Sup A" "Sup (op + a ` A)"]) auto
qed (insert `a \<noteq> -\<infinity>`, auto)
qed
lemma Sup_ereal_cminus:
fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
shows "Sup ((\<lambda>x. a - x) ` A) = a - Inf A"
using Sup_ereal_cadd[of "uminus ` A" a] assms
by (simp add: comp_def image_image minus_ereal_def
ereal_Sup_uminus_image_eq)
lemma SUPR_ereal_cminus:
fixes f :: "'i \<Rightarrow> ereal"
fixes A assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
shows "(SUP x:A. a - f x) = a - (INF x:A. f x)"
using Sup_ereal_cminus[of "f`A" a] assms
unfolding SUP_def INF_def image_image by auto
lemma Inf_ereal_cminus:
fixes A :: "ereal set" assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
shows "Inf ((\<lambda>x. a - x) ` A) = a - Sup A"
proof -
{ fix x have "-a - -x = -(a - x)" using assms by (cases x) auto }
moreover then have "(\<lambda>x. -a - x)`uminus`A = uminus ` (\<lambda>x. a - x) ` A"
by (auto simp: image_image)
ultimately show ?thesis
using Sup_ereal_cminus[of "uminus ` A" "-a"] assms
by (auto simp add: ereal_Sup_uminus_image_eq ereal_Inf_uminus_image_eq)
qed
lemma INFI_ereal_cminus:
fixes a :: ereal assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
shows "(INF x:A. a - f x) = a - (SUP x:A. f x)"
using Inf_ereal_cminus[of "f`A" a] assms
unfolding SUP_def INF_def image_image
by auto
lemma uminus_ereal_add_uminus_uminus:
fixes a b :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b"
by (cases rule: ereal2_cases[of a b]) auto
lemma INFI_ereal_add:
fixes f :: "nat \<Rightarrow> ereal"
assumes "decseq f" "decseq g" and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>"
shows "(INF i. f i + g i) = INFI UNIV f + INFI UNIV g"
proof -
have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>"
using assms unfolding INF_less_iff by auto
{ fix i from fin[of i] have "- ((- f i) + (- g i)) = f i + g i"
by (rule uminus_ereal_add_uminus_uminus) }
then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))"
by simp
also have "\<dots> = INFI UNIV f + INFI UNIV g"
unfolding ereal_INFI_uminus
using assms INF_less
by (subst SUPR_ereal_add)
(auto simp: ereal_SUPR_uminus intro!: uminus_ereal_add_uminus_uminus)
finally show ?thesis .
qed
subsection "Relation to @{typ enat}"
definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)"
declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]]
declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]]
lemma ereal_of_enat_simps[simp]:
"ereal_of_enat (enat n) = ereal n"
"ereal_of_enat \<infinity> = \<infinity>"
by (simp_all add: ereal_of_enat_def)
lemma ereal_of_enat_le_iff[simp]:
"ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n"
by (cases m n rule: enat2_cases) auto
lemma ereal_of_enat_less_iff[simp]:
"ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n"
by (cases m n rule: enat2_cases) auto
lemma numeral_le_ereal_of_enat_iff[simp]:
shows "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n"
by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1])
lemma numeral_less_ereal_of_enat_iff[simp]:
shows "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n"
by (cases n) (auto simp: real_of_nat_less_iff[symmetric])
lemma ereal_of_enat_ge_zero_cancel_iff[simp]:
"0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n"
by (cases n) (auto simp: enat_0[symmetric])
lemma ereal_of_enat_gt_zero_cancel_iff[simp]:
"0 < ereal_of_enat n \<longleftrightarrow> 0 < n"
by (cases n) (auto simp: enat_0[symmetric])
lemma ereal_of_enat_zero[simp]:
"ereal_of_enat 0 = 0"
by (auto simp: enat_0[symmetric])
lemma ereal_of_enat_inf[simp]:
"ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>"
by (cases n) auto
lemma ereal_of_enat_add:
"ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n"
by (cases m n rule: enat2_cases) auto
lemma ereal_of_enat_sub:
assumes "n \<le> m" shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n "
using assms by (cases m n rule: enat2_cases) auto
lemma ereal_of_enat_mult:
"ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n"
by (cases m n rule: enat2_cases) auto
lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult
lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric]
subsection "Limits on @{typ ereal}"
subsubsection "Topological space"
instantiation ereal :: linorder_topology
begin
definition "open_ereal" :: "ereal set \<Rightarrow> bool" where
open_ereal_generated: "open_ereal = generate_topology (range lessThan \<union> range greaterThan)"
instance
by default (simp add: open_ereal_generated)
end
lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
unfolding open_ereal_generated
proof (induct rule: generate_topology.induct)
case (Int A B)
moreover then obtain x z where "\<infinity> \<in> A \<Longrightarrow> {ereal x <..} \<subseteq> A" "\<infinity> \<in> B \<Longrightarrow> {ereal z <..} \<subseteq> B"
by auto
ultimately show ?case
by (intro exI[of _ "max x z"]) fastforce
next
{ fix x have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t" by (cases x) auto }
moreover case (Basis S)
ultimately show ?case
by (auto split: ereal.split)
qed (fastforce simp add: vimage_Union)+
lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)"
unfolding open_ereal_generated
proof (induct rule: generate_topology.induct)
case (Int A B)
moreover then obtain x z where "-\<infinity> \<in> A \<Longrightarrow> {..< ereal x} \<subseteq> A" "-\<infinity> \<in> B \<Longrightarrow> {..< ereal z} \<subseteq> B"
by auto
ultimately show ?case
by (intro exI[of _ "min x z"]) fastforce
next
{ fix x have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x" by (cases x) auto }
moreover case (Basis S)
ultimately show ?case
by (auto split: ereal.split)
qed (fastforce simp add: vimage_Union)+
lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)"
unfolding open_ereal_generated
proof (induct rule: generate_topology.induct)
case (Int A B) then show ?case by auto
next
{ fix x have
"ereal -` {..<x} = (case x of PInfty \<Rightarrow> UNIV | MInfty \<Rightarrow> {} | ereal r \<Rightarrow> {..<r})"
"ereal -` {x<..} = (case x of PInfty \<Rightarrow> {} | MInfty \<Rightarrow> UNIV | ereal r \<Rightarrow> {r<..})"
by (induct x) auto }
moreover case (Basis S)
ultimately show ?case
by (auto split: ereal.split)
qed (fastforce simp add: vimage_Union)+
lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)"
unfolding open_generated_order[where 'a=real]
proof (induct rule: generate_topology.induct)
case (Basis S)
moreover { fix x have "ereal ` {..< x} = { -\<infinity> <..< ereal x }" by auto (case_tac xa, auto) }
moreover { fix x have "ereal ` {x <..} = { ereal x <..< \<infinity> }" by auto (case_tac xa, auto) }
ultimately show ?case
by auto
qed (auto simp add: image_Union image_Int)
lemma open_ereal_def: "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
(is "open A \<longleftrightarrow> ?rhs")
proof
assume "open A" then show ?rhs
using open_PInfty open_MInfty open_ereal_vimage by auto
next
assume "?rhs"
then obtain x y where A: "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..< ereal y} \<subseteq> A"
by auto
have *: "A = ereal ` (ereal -` A) \<union> (if \<infinity> \<in> A then {ereal x<..} else {}) \<union> (if -\<infinity> \<in> A then {..< ereal y} else {})"
using A(2,3) by auto
from open_ereal[OF A(1)] show "open A"
by (subst *) (auto simp: open_Un)
qed
lemma open_PInfty2: assumes "open A" "\<infinity> \<in> A" obtains x where "{ereal x<..} \<subseteq> A"
using open_PInfty[OF assms] by auto
lemma open_MInfty2: assumes "open A" "-\<infinity> \<in> A" obtains x where "{..<ereal x} \<subseteq> A"
using open_MInfty[OF assms] by auto
lemma ereal_openE: assumes "open A" obtains x y where
"open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
using assms open_ereal_def by auto
lemmas open_ereal_lessThan = open_lessThan[where 'a=ereal]
lemmas open_ereal_greaterThan = open_greaterThan[where 'a=ereal]
lemmas ereal_open_greaterThanLessThan = open_greaterThanLessThan[where 'a=ereal]
lemmas closed_ereal_atLeast = closed_atLeast[where 'a=ereal]
lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal]
lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal]
lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal]
lemma ereal_open_cont_interval:
fixes S :: "ereal set"
assumes "open S" "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>"
obtains e where "e>0" "{x-e <..< x+e} \<subseteq> S"
proof-
from `open S` have "open (ereal -` S)" by (rule ereal_openE)
then obtain e where "0 < e" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S"
using assms unfolding open_dist by force
show thesis
proof (intro that subsetI)
show "0 < ereal e" using `0 < e` by auto
fix y assume "y \<in> {x - ereal e<..<x + ereal e}"
with assms obtain t where "y = ereal t" "dist t (real x) < e"
apply (cases y) by (auto simp: dist_real_def)
then show "y \<in> S" using e[of t] by auto
qed
qed
lemma ereal_open_cont_interval2:
fixes S :: "ereal set"
assumes "open S" "x \<in> S" and x: "\<bar>x\<bar> \<noteq> \<infinity>"
obtains a b where "a < x" "x < b" "{a <..< b} \<subseteq> S"
proof-
guess e using ereal_open_cont_interval[OF assms] .
with that[of "x-e" "x+e"] ereal_between[OF x, of e]
show thesis by auto
qed
subsubsection {* Convergent sequences *}
lemma lim_ereal[simp]:
"((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" (is "?l = ?r")
proof (intro iffI topological_tendstoI)
fix S assume "?l" "open S" "x \<in> S"
then show "eventually (\<lambda>x. f x \<in> S) net"
using `?l`[THEN topological_tendstoD, OF open_ereal, OF `open S`]
by (simp add: inj_image_mem_iff)
next
fix S assume "?r" "open S" "ereal x \<in> S"
show "eventually (\<lambda>x. ereal (f x) \<in> S) net"
using `?r`[THEN topological_tendstoD, OF open_ereal_vimage, OF `open S`]
using `ereal x \<in> S` by auto
qed
lemma lim_real_of_ereal[simp]:
assumes lim: "(f ---> ereal x) net"
shows "((\<lambda>x. real (f x)) ---> x) net"
proof (intro topological_tendstoI)
fix S assume "open S" "x \<in> S"
then have S: "open S" "ereal x \<in> ereal ` S"
by (simp_all add: inj_image_mem_iff)
have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S" by auto
from this lim[THEN topological_tendstoD, OF open_ereal, OF S]
show "eventually (\<lambda>x. real (f x) \<in> S) net"
by (rule eventually_mono)
qed
lemma tendsto_PInfty: "(f ---> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)"
unfolding tendsto_def
proof safe
fix S :: "ereal set" assume "open S" "\<infinity> \<in> S"
from open_PInfty[OF this] guess B .. note B = this
moreover
assume "\<forall>r::real. eventually (\<lambda>z. r < f z) F"
then have "eventually (\<lambda>z. f z \<in> {B <..}) F" by auto
ultimately show "eventually (\<lambda>z. f z \<in> S) F" by (auto elim!: eventually_elim1)
next
fix x assume "\<forall>S. open S \<longrightarrow> \<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
from this[rule_format, of "{ereal x <..}"]
show "eventually (\<lambda>y. ereal x < f y) F" by auto
qed
lemma tendsto_MInfty: "(f ---> -\<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. f x < ereal r) F)"
unfolding tendsto_def
proof safe
fix S :: "ereal set" assume "open S" "-\<infinity> \<in> S"
from open_MInfty[OF this] guess B .. note B = this
moreover
assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F"
then have "eventually (\<lambda>z. f z \<in> {..< B}) F" by auto
ultimately show "eventually (\<lambda>z. f z \<in> S) F" by (auto elim!: eventually_elim1)
next
fix x assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
from this[rule_format, of "{..< ereal x}"]
show "eventually (\<lambda>y. f y < ereal x) F" by auto
qed
lemma Lim_PInfty: "f ----> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)"
unfolding tendsto_PInfty eventually_sequentially
proof safe
fix r assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n"
from this[rule_format, of "r+1"] guess N ..
moreover have "ereal r < ereal (r + 1)" by auto
ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n"
by (blast intro: less_le_trans)
qed (blast intro: less_imp_le)
lemma Lim_MInfty: "f ----> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)"
unfolding tendsto_MInfty eventually_sequentially
proof safe
fix r assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r"
from this[rule_format, of "r - 1"] guess N ..
moreover have "ereal (r - 1) < ereal r" by auto
ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r"
by (blast intro: le_less_trans)
qed (blast intro: less_imp_le)
lemma Lim_bounded_PInfty: "f ----> l \<Longrightarrow> (\<And>n. f n \<le> ereal B) \<Longrightarrow> l \<noteq> \<infinity>"
using LIMSEQ_le_const2[of f l "ereal B"] by auto
lemma Lim_bounded_MInfty: "f ----> l \<Longrightarrow> (\<And>n. ereal B \<le> f n) \<Longrightarrow> l \<noteq> -\<infinity>"
using LIMSEQ_le_const[of f l "ereal B"] by auto
lemma tendsto_explicit:
"f ----> f0 <-> (ALL S. open S --> f0 : S --> (EX N. ALL n>=N. f n : S))"
unfolding tendsto_def eventually_sequentially by auto
lemma Lim_bounded_PInfty2:
"f ----> l \<Longrightarrow> ALL n>=N. f n <= ereal B \<Longrightarrow> l ~= \<infinity>"
using LIMSEQ_le_const2[of f l "ereal B"] by fastforce
lemma Lim_bounded_ereal: "f ----> (l :: ereal) \<Longrightarrow> ALL n>=M. f n <= C \<Longrightarrow> l<=C"
by (intro LIMSEQ_le_const2) auto
lemma real_of_ereal_mult[simp]:
fixes a b :: ereal shows "real (a * b) = real a * real b"
by (cases rule: ereal2_cases[of a b]) auto
lemma real_of_ereal_eq_0:
fixes x :: ereal shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0"
by (cases x) auto
lemma tendsto_ereal_realD:
fixes f :: "'a \<Rightarrow> ereal"
assumes "x \<noteq> 0" and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net"
shows "(f ---> x) net"
proof (intro topological_tendstoI)
fix S assume S: "open S" "x \<in> S"
with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}" by auto
from tendsto[THEN topological_tendstoD, OF this]
show "eventually (\<lambda>x. f x \<in> S) net"
by (rule eventually_rev_mp) (auto simp: ereal_real)
qed
lemma tendsto_ereal_realI:
fixes f :: "'a \<Rightarrow> ereal"
assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net"
shows "((\<lambda>x. ereal (real (f x))) ---> x) net"
proof (intro topological_tendstoI)
fix S assume "open S" "x \<in> S"
with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}" by auto
from tendsto[THEN topological_tendstoD, OF this]
show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net"
by (elim eventually_elim1) (auto simp: ereal_real)
qed
lemma ereal_mult_cancel_left:
fixes a b c :: ereal shows "a * b = a * c \<longleftrightarrow>
((\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c)"
by (cases rule: ereal3_cases[of a b c])
(simp_all add: zero_less_mult_iff)
lemma ereal_inj_affinity:
fixes m t :: ereal
assumes "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" "\<bar>t\<bar> \<noteq> \<infinity>"
shows "inj_on (\<lambda>x. m * x + t) A"
using assms
by (cases rule: ereal2_cases[of m t])
(auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left)
lemma ereal_PInfty_eq_plus[simp]:
fixes a b :: ereal
shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_MInfty_eq_plus[simp]:
fixes a b :: ereal
shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)"
by (cases rule: ereal2_cases[of a b]) auto
lemma ereal_less_divide_pos:
fixes x y :: ereal
shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z"
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
lemma ereal_divide_less_pos:
fixes x y z :: ereal
shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z"
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
lemma ereal_divide_eq:
fixes a b c :: ereal
shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c"
by (cases rule: ereal3_cases[of a b c])
(simp_all add: field_simps)
lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>"
by (cases a) auto
lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x"
by (cases x) auto
lemma ereal_real': assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "ereal (real x) = x"
using assms by auto
lemma ereal_le_ereal_bounded:
fixes x y z :: ereal
assumes "z \<le> y"
assumes *: "\<And>B. z < B \<Longrightarrow> B < x \<Longrightarrow> B \<le> y"
shows "x \<le> y"
proof (rule ereal_le_ereal)
fix B assume "B < x"
show "B \<le> y"
proof cases
assume "z < B" from *[OF this `B < x`] show "B \<le> y" .
next
assume "\<not> z < B" with `z \<le> y` show "B \<le> y" by auto
qed
qed
lemma fixes x y :: ereal
shows Sup_atMost[simp]: "Sup {.. y} = y"
and Sup_lessThan[simp]: "Sup {..< y} = y"
and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
by (auto simp: Sup_ereal_def intro!: Least_equality
intro: ereal_le_ereal ereal_le_ereal_bounded[of x])
lemma Sup_greaterThanlessThan[simp]:
fixes x y :: ereal assumes "x < y" shows "Sup { x <..< y} = y"
unfolding Sup_ereal_def
proof (intro Least_equality ereal_le_ereal_bounded[of _ _ y])
fix z assume z: "\<forall>u\<in>{x<..<y}. u \<le> z"
from ereal_dense[OF `x < y`] guess w .. note w = this
with z[THEN bspec, of w] show "x \<le> z" by auto
qed auto
lemma real_ereal_id: "real o ereal = id"
proof-
{ fix x have "(real o ereal) x = id x" by auto }
then show ?thesis using ext by blast
qed
lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
by (metis range_ereal open_ereal open_UNIV)
lemma ereal_le_distrib:
fixes a b c :: ereal shows "c * (a + b) \<le> c * a + c * b"
by (cases rule: ereal3_cases[of a b c])
(auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)
lemma ereal_pos_distrib:
fixes a b c :: ereal assumes "0 \<le> c" "c \<noteq> \<infinity>" shows "c * (a + b) = c * a + c * b"
using assms by (cases rule: ereal3_cases[of a b c])
(auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)
lemma ereal_pos_le_distrib:
fixes a b c :: ereal
assumes "c>=0"
shows "c * (a + b) <= c * a + c * b"
using assms by (cases rule: ereal3_cases[of a b c])
(auto simp add: field_simps)
lemma ereal_max_mono:
"[| (a::ereal) <= b; c <= d |] ==> max a c <= max b d"
by (metis sup_ereal_def sup_mono)
lemma ereal_max_least:
"[| (a::ereal) <= x; c <= x |] ==> max a c <= x"
by (metis sup_ereal_def sup_least)
lemma ereal_LimI_finite:
fixes x :: ereal
assumes "\<bar>x\<bar> \<noteq> \<infinity>"
assumes "!!r. 0 < r ==> EX N. ALL n>=N. u n < x + r & x < u n + r"
shows "u ----> x"
proof (rule topological_tendstoI, unfold eventually_sequentially)
obtain rx where rx_def: "x=ereal rx" using assms by (cases x) auto
fix S assume "open S" "x : S"
then have "open (ereal -` S)" unfolding open_ereal_def by auto
with `x \<in> S` obtain r where "0 < r" and dist: "!!y. dist y rx < r ==> ereal y \<in> S"
unfolding open_real_def rx_def by auto
then obtain n where
upper: "!!N. n <= N ==> u N < x + ereal r" and
lower: "!!N. n <= N ==> x < u N + ereal r" using assms(2)[of "ereal r"] by auto
show "EX N. ALL n>=N. u n : S"
proof (safe intro!: exI[of _ n])
fix N assume "n <= N"
from upper[OF this] lower[OF this] assms `0 < r`
have "u N ~: {\<infinity>,(-\<infinity>)}" by auto
then obtain ra where ra_def: "(u N) = ereal ra" by (cases "u N") auto
hence "rx < ra + r" and "ra < rx + r"
using rx_def assms `0 < r` lower[OF `n <= N`] upper[OF `n <= N`] by auto
hence "dist (real (u N)) rx < r"
using rx_def ra_def
by (auto simp: dist_real_def abs_diff_less_iff field_simps)
from dist[OF this] show "u N : S" using `u N ~: {\<infinity>, -\<infinity>}`
by (auto simp: ereal_real split: split_if_asm)
qed
qed
lemma tendsto_obtains_N:
assumes "f ----> f0"
assumes "open S" "f0 : S"
obtains N where "ALL n>=N. f n : S"
using tendsto_explicit[of f f0] assms by auto
lemma ereal_LimI_finite_iff:
fixes x :: ereal
assumes "\<bar>x\<bar> \<noteq> \<infinity>"
shows "u ----> x <-> (ALL r. 0 < r --> (EX N. ALL n>=N. u n < x + r & x < u n + r))"
(is "?lhs <-> ?rhs")
proof
assume lim: "u ----> x"
{ fix r assume "(r::ereal)>0"
then obtain N where N_def: "ALL n>=N. u n : {x - r <..< x + r}"
apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
using lim ereal_between[of x r] assms `r>0` by auto
hence "EX N. ALL n>=N. u n < x + r & x < u n + r"
using ereal_minus_less[of r x] by (cases r) auto
} then show "?rhs" by auto
next
assume ?rhs then show "u ----> x"
using ereal_LimI_finite[of x] assms by auto
qed
subsubsection {* @{text Liminf} and @{text Limsup} *}
definition
"Liminf F f = (SUP P:{P. eventually P F}. INF x:{x. P x}. f x)"
definition
"Limsup F f = (INF P:{P. eventually P F}. SUP x:{x. P x}. f x)"
abbreviation "liminf \<equiv> Liminf sequentially"
abbreviation "limsup \<equiv> Limsup sequentially"
lemma Liminf_eqI:
"(\<And>P. eventually P F \<Longrightarrow> INFI (Collect P) f \<le> x) \<Longrightarrow>
(\<And>y. (\<And>P. eventually P F \<Longrightarrow> INFI (Collect P) f \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> Liminf F f = x"
unfolding Liminf_def by (auto intro!: SUP_eqI)
lemma Limsup_eqI:
"(\<And>P. eventually P F \<Longrightarrow> x \<le> SUPR (Collect P) f) \<Longrightarrow>
(\<And>y. (\<And>P. eventually P F \<Longrightarrow> y \<le> SUPR (Collect P) f) \<Longrightarrow> y \<le> x) \<Longrightarrow> Limsup F f = x"
unfolding Limsup_def by (auto intro!: INF_eqI)
lemma liminf_SUPR_INFI:
fixes f :: "nat \<Rightarrow> 'a :: complete_lattice"
shows "liminf f = (SUP n. INF m:{n..}. f m)"
unfolding Liminf_def eventually_sequentially
by (rule SUPR_eq) (auto simp: atLeast_def intro!: INF_mono)
lemma limsup_INFI_SUPR:
fixes f :: "nat \<Rightarrow> 'a :: complete_lattice"
shows "limsup f = (INF n. SUP m:{n..}. f m)"
unfolding Limsup_def eventually_sequentially
by (rule INFI_eq) (auto simp: atLeast_def intro!: SUP_mono)
lemma Limsup_const:
assumes ntriv: "\<not> trivial_limit F"
shows "Limsup F (\<lambda>x. c) = (c::'a::complete_lattice)"
proof -
have *: "\<And>P. Ex P \<longleftrightarrow> P \<noteq> (\<lambda>x. False)" by auto
have "\<And>P. eventually P F \<Longrightarrow> (SUP x : {x. P x}. c) = c"
using ntriv by (intro SUP_const) (auto simp: eventually_False *)
then show ?thesis
unfolding Limsup_def using eventually_True
by (subst INF_cong[where D="\<lambda>x. c"])
(auto intro!: INF_const simp del: eventually_True)
qed
lemma Liminf_const:
assumes ntriv: "\<not> trivial_limit F"
shows "Liminf F (\<lambda>x. c) = (c::'a::complete_lattice)"
proof -
have *: "\<And>P. Ex P \<longleftrightarrow> P \<noteq> (\<lambda>x. False)" by auto
have "\<And>P. eventually P F \<Longrightarrow> (INF x : {x. P x}. c) = c"
using ntriv by (intro INF_const) (auto simp: eventually_False *)
then show ?thesis
unfolding Liminf_def using eventually_True
by (subst SUP_cong[where D="\<lambda>x. c"])
(auto intro!: SUP_const simp del: eventually_True)
qed
lemma Liminf_mono:
fixes f g :: "'a => 'b :: complete_lattice"
assumes ev: "eventually (\<lambda>x. f x \<le> g x) F"
shows "Liminf F f \<le> Liminf F g"
unfolding Liminf_def
proof (safe intro!: SUP_mono)
fix P assume "eventually P F"
with ev have "eventually (\<lambda>x. f x \<le> g x \<and> P x) F" (is "eventually ?Q F") by (rule eventually_conj)
then show "\<exists>Q\<in>{P. eventually P F}. INFI (Collect P) f \<le> INFI (Collect Q) g"
by (intro bexI[of _ ?Q]) (auto intro!: INF_mono)
qed
lemma Liminf_eq:
fixes f g :: "'a \<Rightarrow> 'b :: complete_lattice"
assumes "eventually (\<lambda>x. f x = g x) F"
shows "Liminf F f = Liminf F g"
by (intro antisym Liminf_mono eventually_mono[OF _ assms]) auto
lemma Limsup_mono:
fixes f g :: "'a \<Rightarrow> 'b :: complete_lattice"
assumes ev: "eventually (\<lambda>x. f x \<le> g x) F"
shows "Limsup F f \<le> Limsup F g"
unfolding Limsup_def
proof (safe intro!: INF_mono)
fix P assume "eventually P F"
with ev have "eventually (\<lambda>x. f x \<le> g x \<and> P x) F" (is "eventually ?Q F") by (rule eventually_conj)
then show "\<exists>Q\<in>{P. eventually P F}. SUPR (Collect Q) f \<le> SUPR (Collect P) g"
by (intro bexI[of _ ?Q]) (auto intro!: SUP_mono)
qed
lemma Limsup_eq:
fixes f g :: "'a \<Rightarrow> 'b :: complete_lattice"
assumes "eventually (\<lambda>x. f x = g x) net"
shows "Limsup net f = Limsup net g"
by (intro antisym Limsup_mono eventually_mono[OF _ assms]) auto
lemma Liminf_le_Limsup:
fixes f :: "'a \<Rightarrow> 'b::complete_lattice"
assumes ntriv: "\<not> trivial_limit F"
shows "Liminf F f \<le> Limsup F f"
unfolding Limsup_def Liminf_def
apply (rule complete_lattice_class.SUP_least)
apply (rule complete_lattice_class.INF_greatest)
proof safe
fix P Q assume "eventually P F" "eventually Q F"
then have "eventually (\<lambda>x. P x \<and> Q x) F" (is "eventually ?C F") by (rule eventually_conj)
then have not_False: "(\<lambda>x. P x \<and> Q x) \<noteq> (\<lambda>x. False)"
using ntriv by (auto simp add: eventually_False)
have "INFI (Collect P) f \<le> INFI (Collect ?C) f"
by (rule INF_mono) auto
also have "\<dots> \<le> SUPR (Collect ?C) f"
using not_False by (intro INF_le_SUP) auto
also have "\<dots> \<le> SUPR (Collect Q) f"
by (rule SUP_mono) auto
finally show "INFI (Collect P) f \<le> SUPR (Collect Q) f" .
qed
lemma
fixes X :: "nat \<Rightarrow> ereal"
shows ereal_incseq_uminus[simp]: "incseq (\<lambda>i. - X i) = decseq X"
and ereal_decseq_uminus[simp]: "decseq (\<lambda>i. - X i) = incseq X"
unfolding incseq_def decseq_def by auto
lemma Liminf_bounded:
fixes X Y :: "'a \<Rightarrow> 'b::complete_lattice"
assumes ntriv: "\<not> trivial_limit F"
assumes le: "eventually (\<lambda>n. C \<le> X n) F"
shows "C \<le> Liminf F X"
using Liminf_mono[OF le] Liminf_const[OF ntriv, of C] by simp
lemma Limsup_bounded:
fixes X Y :: "'a \<Rightarrow> 'b::complete_lattice"
assumes ntriv: "\<not> trivial_limit F"
assumes le: "eventually (\<lambda>n. X n \<le> C) F"
shows "Limsup F X \<le> C"
using Limsup_mono[OF le] Limsup_const[OF ntriv, of C] by simp
lemma liminf_bounded_iff:
fixes x :: "nat \<Rightarrow> ereal"
shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" (is "?lhs <-> ?rhs")
proof safe
fix B assume "B < C" "C \<le> liminf x"
then have "B < liminf x" by auto
then obtain N where "B < (INF m:{N..}. x m)"
unfolding liminf_SUPR_INFI SUP_def less_Sup_iff by auto
from less_INF_D[OF this] show "\<exists>N. \<forall>n\<ge>N. B < x n" by auto
next
assume *: "\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n"
{ fix B assume "B<C"
then obtain N where "\<forall>n\<ge>N. B < x n" using `?rhs` by auto
hence "B \<le> (INF m:{N..}. x m)" by (intro INF_greatest) auto
also have "... \<le> liminf x" unfolding liminf_SUPR_INFI by (intro SUP_upper) simp
finally have "B \<le> liminf x" .
} then show "?lhs"
by (metis * leD Liminf_bounded[OF sequentially_bot] linorder_le_less_linear eventually_sequentially)
qed
lemma liminf_subseq_mono:
fixes X :: "nat \<Rightarrow> 'a :: complete_linorder"
assumes "subseq r"
shows "liminf X \<le> liminf (X \<circ> r) "
proof-
have "\<And>n. (INF m:{n..}. X m) \<le> (INF m:{n..}. (X \<circ> r) m)"
proof (safe intro!: INF_mono)
fix n m :: nat assume "n \<le> m" then show "\<exists>ma\<in>{n..}. X ma \<le> (X \<circ> r) m"
using seq_suble[OF `subseq r`, of m] by (intro bexI[of _ "r m"]) auto
qed
then show ?thesis by (auto intro!: SUP_mono simp: liminf_SUPR_INFI comp_def)
qed
lemma limsup_subseq_mono:
fixes X :: "nat \<Rightarrow> 'a :: complete_linorder"
assumes "subseq r"
shows "limsup (X \<circ> r) \<le> limsup X"
proof-
have "\<And>n. (SUP m:{n..}. (X \<circ> r) m) \<le> (SUP m:{n..}. X m)"
proof (safe intro!: SUP_mono)
fix n m :: nat assume "n \<le> m" then show "\<exists>ma\<in>{n..}. (X \<circ> r) m \<le> X ma"
using seq_suble[OF `subseq r`, of m] by (intro bexI[of _ "r m"]) auto
qed
then show ?thesis by (auto intro!: INF_mono simp: limsup_INFI_SUPR comp_def)
qed
lemma lim_imp_Liminf:
fixes f :: "'a \<Rightarrow> ereal" (* generalize to inner dense, complete_linorder, order_topology *)
assumes ntriv: "\<not> trivial_limit F"
assumes lim: "(f ---> f0) F"
shows "Liminf F f = f0"
proof (rule Liminf_eqI)
fix y assume *: "\<And>P. eventually P F \<Longrightarrow> INFI (Collect P) f \<le> y"
show "f0 \<le> y"
proof (rule ereal_le_ereal)
fix B
assume "B < f0"
have "B \<le> INFI {x. B < f x} f"
by (rule INF_greatest) simp
also have "INFI {x. B < f x} f \<le> y"
using lim[THEN topological_tendstoD, of "{B <..}"] `B < f0` * by auto
finally show "B \<le> y" .
qed
next
fix P assume P: "eventually P F"
then have "eventually (\<lambda>x. INFI (Collect P) f \<le> f x) F"
by eventually_elim (auto intro!: INF_lower)
then show "INFI (Collect P) f \<le> f0"
by (rule tendsto_le[OF ntriv lim tendsto_const])
qed
lemma lim_imp_Limsup:
fixes f :: "'a \<Rightarrow> ereal" (* generalize to inner dense, complete_linorder, order_topology *)
assumes ntriv: "\<not> trivial_limit F"
assumes lim: "(f ---> f0) F"
shows "Limsup F f = f0"
proof (rule Limsup_eqI)
fix y assume *: "\<And>P. eventually P F \<Longrightarrow> y \<le> SUPR (Collect P) f"
show "y \<le> f0"
proof (rule ereal_ge_ereal, safe)
fix B
assume "f0 < B"
have "y \<le> SUPR {x. f x < B} f"
using lim[THEN topological_tendstoD, of "{..< B}"] `f0 < B` * by auto
also have "SUPR {x. f x < B} f \<le> B"
by (rule SUP_least) simp
finally show "y \<le> B" .
qed
next
fix P assume P: "eventually P F"
then have "eventually (\<lambda>x. f x \<le> SUPR (Collect P) f) F"
by eventually_elim (auto intro!: SUP_upper)
then show "f0 \<le> SUPR (Collect P) f"
by (rule tendsto_le[OF ntriv tendsto_const lim])
qed
definition (in order) mono_set:
"mono_set S \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> x \<in> S \<longrightarrow> y \<in> S)"
lemma (in order) mono_greaterThan [intro, simp]: "mono_set {B<..}" unfolding mono_set by auto
lemma (in order) mono_atLeast [intro, simp]: "mono_set {B..}" unfolding mono_set by auto
lemma (in order) mono_UNIV [intro, simp]: "mono_set UNIV" unfolding mono_set by auto
lemma (in order) mono_empty [intro, simp]: "mono_set {}" unfolding mono_set by auto
lemma (in complete_linorder) mono_set_iff:
fixes S :: "'a set"
defines "a \<equiv> Inf S"
shows "mono_set S \<longleftrightarrow> (S = {a <..} \<or> S = {a..})" (is "_ = ?c")
proof
assume "mono_set S"
then have mono: "\<And>x y. x \<le> y \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S" by (auto simp: mono_set)
show ?c
proof cases
assume "a \<in> S"
show ?c
using mono[OF _ `a \<in> S`]
by (auto intro: Inf_lower simp: a_def)
next
assume "a \<notin> S"
have "S = {a <..}"
proof safe
fix x assume "x \<in> S"
then have "a \<le> x" unfolding a_def by (rule Inf_lower)
then show "a < x" using `x \<in> S` `a \<notin> S` by (cases "a = x") auto
next
fix x assume "a < x"
then obtain y where "y < x" "y \<in> S" unfolding a_def Inf_less_iff ..
with mono[of y x] show "x \<in> S" by auto
qed
then show ?c ..
qed
qed auto
subsubsection {* Tests for code generator *}
(* A small list of simple arithmetic expressions *)
value [code] "- \<infinity> :: ereal"
value [code] "\<bar>-\<infinity>\<bar> :: ereal"
value [code] "4 + 5 / 4 - ereal 2 :: ereal"
value [code] "ereal 3 < \<infinity>"
value [code] "real (\<infinity>::ereal) = 0"
end