(* Title: HOL/Library/Kleene_Algebras.thy
ID: $Id$
Author: Alexander Krauss, TU Muenchen
*)
theory Kleene_Algebras
imports Main
begin
text {* A type class of kleene algebras *}
class star =
fixes star :: "'a \<Rightarrow> 'a"
axclass idem_add \<subseteq> ab_semigroup_add
add_idem[simp]: "x + x = x"
lemma add_idem2[simp]: "(x::'a::idem_add) + (x + y) = x + y"
unfolding add_assoc[symmetric]
by simp
axclass order_by_add \<subseteq> idem_add, ord
order_def: "a \<le> b \<longleftrightarrow> a + b = b"
strict_order_def: "a < b \<longleftrightarrow> a \<le> b \<and> a \<noteq> b"
lemma ord_simp1[simp]: "(x::'a::order_by_add) \<le> y \<Longrightarrow> x + y = y"
unfolding order_def .
lemma ord_simp2[simp]: "(x::'a::order_by_add) \<le> y \<Longrightarrow> y + x = y"
unfolding order_def add_commute .
lemma ord_intro: "(x::'a::order_by_add) + y = y \<Longrightarrow> x \<le> y"
unfolding order_def .
instance order_by_add \<subseteq> order
proof
fix x y z :: 'a
show "x \<le> x" unfolding order_def by simp
show "\<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> x \<le> z"
proof (rule ord_intro)
assume "x \<le> y" "y \<le> z"
have "x + z = x + y + z" by (simp add:`y \<le> z` add_assoc)
also have "\<dots> = y + z" by (simp add:`x \<le> y`)
also have "\<dots> = z" by (simp add:`y \<le> z`)
finally show "x + z = z" .
qed
show "\<lbrakk>x \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> x = y" unfolding order_def
by (simp add:add_commute)
show "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" by (fact strict_order_def)
qed
axclass pre_kleene \<subseteq> semiring_1, order_by_add
instance pre_kleene \<subseteq> pordered_semiring
proof
fix x y z :: 'a
assume "x \<le> y"
show "z + x \<le> z + y"
proof (rule ord_intro)
have "z + x + (z + y) = x + y + z" by (simp add:add_ac)
also have "\<dots> = z + y" by (simp add:`x \<le> y` add_ac)
finally show "z + x + (z + y) = z + y" .
qed
show "z * x \<le> z * y"
proof (rule ord_intro)
from `x \<le> y` have "z * (x + y) = z * y" by simp
thus "z * x + z * y = z * y" by (simp add:right_distrib)
qed
show "x * z \<le> y * z"
proof (rule ord_intro)
from `x \<le> y` have "(x + y) * z = y * z" by simp
thus "x * z + y * z = y * z" by (simp add:left_distrib)
qed
qed
axclass kleene \<subseteq> pre_kleene, star
star1: "1 + a * star a \<le> star a"
star2: "1 + star a * a \<le> star a"
star3: "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
star4: "x * a \<le> x \<Longrightarrow> x * star a \<le> x"
axclass kleene_by_comp_lat \<subseteq>
pre_kleene, comp_lat, recpower, star
star_cont: "a * star b * c = (SUP n. a * b ^ n * c)"
lemma plus_leI:
fixes x :: "'a :: order_by_add"
shows "x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x + y \<le> z"
unfolding order_def by (simp add:add_assoc)
lemma le_SUPI':
fixes l :: "'a :: comp_lat"
assumes "l \<le> M i"
shows "l \<le> (SUP i. M i)"
using prems
by (rule order_trans) (rule le_SUPI, rule refl)
lemma zero_minimum[simp]: "(0::'a::pre_kleene) \<le> x"
unfolding order_def by simp
instance kleene_by_comp_lat \<subseteq> kleene
proof
fix a x :: 'a
have [simp]: "1 \<le> star a"
unfolding star_cont[of 1 a 1, simplified]
by (rule le_SUPI) (rule power_0[symmetric])
show "1 + a * star a \<le> star a"
apply (rule plus_leI, simp)
apply (simp add:star_cont[of a a 1, simplified])
apply (simp add:star_cont[of 1 a 1, simplified])
apply (intro SUP_leI le_SUPI)
by (rule power_Suc[symmetric])
show "1 + star a * a \<le> star a"
apply (rule plus_leI, simp)
apply (simp add:star_cont[of 1 a a, simplified])
apply (simp add:star_cont[of 1 a 1, simplified])
apply (intro SUP_leI le_SUPI)
by (simp add:power_Suc[symmetric] power_commutes)
show "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
proof -
assume a: "a * x \<le> x"
{
fix n
have "a ^ (Suc n) * x \<le> a ^ n * x"
proof (induct n)
case 0 thus ?case by (simp add:a power_Suc)
next
case (Suc n)
hence "a * (a ^ Suc n * x) \<le> a * (a ^ n * x)"
by (auto intro: mult_mono)
thus ?case
by (simp add:power_Suc mult_assoc)
qed
}
note a = this
{
fix n have "a ^ n * x \<le> x"
proof (induct n)
case 0 show ?case by simp
next
case (Suc n) with a[of n]
show ?case by simp
qed
}
note b = this
show "star a * x \<le> x"
unfolding star_cont[of 1 a x, simplified]
by (rule SUP_leI) (rule b)
qed
show "x * a \<le> x \<Longrightarrow> x * star a \<le> x" (* symmetric *)
proof -
assume a: "x * a \<le> x"
{
fix n
have "x * a ^ (Suc n) \<le> x * a ^ n"
proof (induct n)
case 0 thus ?case by (simp add:a power_Suc)
next
case (Suc n)
hence "(x * a ^ Suc n) * a \<le> (x * a ^ n) * a"
by (auto intro: mult_mono)
thus ?case
by (simp add:power_Suc power_commutes mult_assoc)
qed
}
note a = this
{
fix n have "x * a ^ n \<le> x"
proof (induct n)
case 0 show ?case by simp
next
case (Suc n) with a[of n]
show ?case by simp
qed
}
note b = this
show "x * star a \<le> x"
unfolding star_cont[of x a 1, simplified]
by (rule SUP_leI) (rule b)
qed
qed
lemma less_add[simp]:
fixes a b :: "'a :: order_by_add"
shows "a \<le> a + b"
and "b \<le> a + b"
unfolding order_def
by (auto simp:add_ac)
lemma add_est1:
fixes a b c :: "'a :: order_by_add"
assumes a: "a + b \<le> c"
shows "a \<le> c"
using less_add(1) a
by (rule order_trans)
lemma add_est2:
fixes a b c :: "'a :: order_by_add"
assumes a: "a + b \<le> c"
shows "b \<le> c"
using less_add(2) a
by (rule order_trans)
lemma star3':
fixes a b x :: "'a :: kleene"
assumes a: "b + a * x \<le> x"
shows "star a * b \<le> x"
proof (rule order_trans)
from a have "b \<le> x" by (rule add_est1)
show "star a * b \<le> star a * x"
by (rule mult_mono) (auto simp:`b \<le> x`)
from a have "a * x \<le> x" by (rule add_est2)
with star3 show "star a * x \<le> x" .
qed
lemma star4':
fixes a b x :: "'a :: kleene"
assumes a: "b + x * a \<le> x"
shows "b * star a \<le> x"
proof (rule order_trans)
from a have "b \<le> x" by (rule add_est1)
show "b * star a \<le> x * star a"
by (rule mult_mono) (auto simp:`b \<le> x`)
from a have "x * a \<le> x" by (rule add_est2)
with star4 show "x * star a \<le> x" .
qed
lemma star_mono:
fixes x y :: "'a :: kleene"
assumes "x \<le> y"
shows "star x \<le> star y"
oops
lemma star_idemp:
fixes x :: "'a :: kleene"
shows "star (star x) = star x"
oops
lemma zero_star[simp]:
shows "star (0::'a::kleene) = 1"
oops
lemma star_unfold_left:
fixes a :: "'a :: kleene"
shows "1 + a * star a = star a"
proof (rule order_antisym, rule star1)
have "1 + a * (1 + a * star a) \<le> 1 + a * star a"
apply (rule add_mono, rule)
apply (rule mult_mono, auto)
apply (rule star1)
done
with star3' have "star a * 1 \<le> 1 + a * star a" .
thus "star a \<le> 1 + a * star a" by simp
qed
lemma star_unfold_right:
fixes a :: "'a :: kleene"
shows "1 + star a * a = star a"
proof (rule order_antisym, rule star2)
have "1 + (1 + star a * a) * a \<le> 1 + star a * a"
apply (rule add_mono, rule)
apply (rule mult_mono, auto)
apply (rule star2)
done
with star4' have "1 * star a \<le> 1 + star a * a" .
thus "star a \<le> 1 + star a * a" by simp
qed
lemma star_commute:
fixes a b x :: "'a :: kleene"
assumes a: "a * x = x * b"
shows "star a * x = x * star b"
proof (rule order_antisym)
show "star a * x \<le> x * star b"
proof (rule star3', rule order_trans)
from a have "a * x \<le> x * b" by simp
hence "a * x * star b \<le> x * b * star b"
by (rule mult_mono) auto
thus "x + a * (x * star b) \<le> x + x * b * star b"
using add_mono by (auto simp: mult_assoc)
show "\<dots> \<le> x * star b"
proof -
have "x * (1 + b * star b) \<le> x * star b"
by (rule mult_mono[OF _ star1]) auto
thus ?thesis
by (simp add:right_distrib mult_assoc)
qed
qed
show "x * star b \<le> star a * x"
proof (rule star4', rule order_trans)
from a have b: "x * b \<le> a * x" by simp
have "star a * x * b \<le> star a * a * x"
unfolding mult_assoc
by (rule mult_mono[OF _ b]) auto
thus "x + star a * x * b \<le> x + star a * a * x"
using add_mono by auto
show "\<dots> \<le> star a * x"
proof -
have "(1 + star a * a) * x \<le> star a * x"
by (rule mult_mono[OF star2]) auto
thus ?thesis
by (simp add:left_distrib mult_assoc)
qed
qed
qed
lemma star_assoc:
fixes c d :: "'a :: kleene"
shows "star (c * d) * c = c * star (d * c)"
oops
lemma star_dist:
fixes a b :: "'a :: kleene"
shows "star (a + b) = star a * star (b * star a)"
oops
lemma star_one:
fixes a p p' :: "'a :: kleene"
assumes "p * p' = 1" and "p' * p = 1"
shows "p' * star a * p = star (p' * a * p)"
oops
lemma star_zero:
"star (0::'a::kleene) = 1"
by (rule star_unfold_left[of 0, simplified])
(* Own lemmas *)
lemma x_less_star[simp]:
fixes x :: "'a :: kleene"
shows "x \<le> x * star a"
proof -
have "x \<le> x * (1 + a * star a)" by (simp add:right_distrib)
also have "\<dots> = x * star a" by (simp only: star_unfold_left)
finally show ?thesis .
qed
subsection {* Transitive Closure *}
definition
"tcl (x::'a::kleene) = star x * x"
lemma tcl_zero:
"tcl (0::'a::kleene) = 0"
unfolding tcl_def by simp
subsection {* Naive Algorithm to generate the transitive closure *}
function (default "\<lambda>x. 0", tailrec)
mk_tcl :: "('a::{plus,times,ord,zero}) \<Rightarrow> 'a \<Rightarrow> 'a"
where
"mk_tcl A X = (if X * A \<le> X then X else mk_tcl A (X + X * A))"
by pat_completeness simp
declare mk_tcl.simps[simp del] (* loops *)
lemma mk_tcl_code[code]:
"mk_tcl A X =
(let XA = X * A
in if XA \<le> X then X else mk_tcl A (X + XA))"
unfolding mk_tcl.simps[of A X] Let_def ..
lemma mk_tcl_lemma1:
fixes X :: "'a :: kleene"
shows "(X + X * A) * star A = X * star A"
proof -
have "A * star A \<le> 1 + A * star A" by simp
also have "\<dots> = star A" by (simp add:star_unfold_left)
finally have "star A + A * star A = star A" by simp
hence "X * (star A + A * star A) = X * star A" by simp
thus ?thesis by (simp add:left_distrib right_distrib mult_ac)
qed
lemma mk_tcl_lemma2:
fixes X :: "'a :: kleene"
shows "X * A \<le> X \<Longrightarrow> X * star A = X"
by (rule order_antisym) (auto simp:star4)
lemma mk_tcl_correctness:
fixes A X :: "'a :: {kleene}"
assumes "mk_tcl_dom (A, X)"
shows "mk_tcl A X = X * star A"
using prems
by induct (auto simp:mk_tcl_lemma1 mk_tcl_lemma2)
lemma graph_implies_dom: "mk_tcl_graph x y \<Longrightarrow> mk_tcl_dom x"
by (rule mk_tcl_graph.induct) (auto intro:accI elim:mk_tcl_rel.cases)
lemma mk_tcl_default: "\<not> mk_tcl_dom (a,x) \<Longrightarrow> mk_tcl a x = 0"
unfolding mk_tcl_def
by (rule fundef_default_value[OF mk_tcl_sum_def graph_implies_dom])
text {* We can replace the dom-Condition of the correctness theorem
with something executable *}
lemma mk_tcl_correctness2:
fixes A X :: "'a :: {kleene}"
assumes "mk_tcl A A \<noteq> 0"
shows "mk_tcl A A = tcl A"
using prems mk_tcl_default mk_tcl_correctness
unfolding tcl_def
by (auto simp:star_commute)
end