(* Title: HOLCF/Ssum0.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Strict sum with typedef
*)
(* ------------------------------------------------------------------------ *)
(* A non-emptyness result for Sssum *)
(* ------------------------------------------------------------------------ *)
Goalw [Ssum_def] "Sinl_Rep(a):Ssum";
by (Blast_tac 1);
qed "SsumIl";
Goalw [Ssum_def] "Sinr_Rep(a):Ssum";
by (Blast_tac 1);
qed "SsumIr";
Goal "inj_on Abs_Ssum Ssum";
by (rtac inj_on_inverseI 1);
by (etac Abs_Ssum_inverse 1);
qed "inj_on_Abs_Ssum";
(* ------------------------------------------------------------------------ *)
(* Strictness of Sinr_Rep, Sinl_Rep and Isinl, Isinr *)
(* ------------------------------------------------------------------------ *)
Goalw [Sinr_Rep_def,Sinl_Rep_def]
"Sinl_Rep(UU) = Sinr_Rep(UU)";
by (rtac ext 1);
by (rtac ext 1);
by (rtac ext 1);
by (fast_tac HOL_cs 1);
qed "strict_SinlSinr_Rep";
Goalw [Isinl_def,Isinr_def]
"Isinl(UU) = Isinr(UU)";
by (rtac (strict_SinlSinr_Rep RS arg_cong) 1);
qed "strict_IsinlIsinr";
(* ------------------------------------------------------------------------ *)
(* distinctness of Sinl_Rep, Sinr_Rep and Isinl, Isinr *)
(* ------------------------------------------------------------------------ *)
Goalw [Sinl_Rep_def,Sinr_Rep_def]
"(Sinl_Rep(a) = Sinr_Rep(b)) ==> a=UU & b=UU";
by (blast_tac (claset() addSDs [fun_cong]) 1);
qed "noteq_SinlSinr_Rep";
Goalw [Isinl_def,Isinr_def]
"Isinl(a)=Isinr(b) ==> a=UU & b=UU";
by (rtac noteq_SinlSinr_Rep 1);
by (etac (inj_on_Abs_Ssum RS inj_onD) 1);
by (rtac SsumIl 1);
by (rtac SsumIr 1);
qed "noteq_IsinlIsinr";
(* ------------------------------------------------------------------------ *)
(* injectivity of Sinl_Rep, Sinr_Rep and Isinl, Isinr *)
(* ------------------------------------------------------------------------ *)
Goalw [Sinl_Rep_def] "(Sinl_Rep(a) = Sinl_Rep(UU)) ==> a=UU";
by (blast_tac (claset() addSDs [fun_cong]) 1);
qed "inject_Sinl_Rep1";
Goalw [Sinr_Rep_def] "(Sinr_Rep(b) = Sinr_Rep(UU)) ==> b=UU";
by (blast_tac (claset() addSDs [fun_cong]) 1);
qed "inject_Sinr_Rep1";
Goalw [Sinl_Rep_def]
"[| a1~=UU ; a2~=UU ; Sinl_Rep(a1)=Sinl_Rep(a2) |] ==> a1=a2";
by (blast_tac (claset() addSDs [fun_cong]) 1);
qed "inject_Sinl_Rep2";
Goalw [Sinr_Rep_def]
"[|b1~=UU ; b2~=UU ; Sinr_Rep(b1)=Sinr_Rep(b2) |] ==> b1=b2";
by (blast_tac (claset() addSDs [fun_cong]) 1);
qed "inject_Sinr_Rep2";
Goal "Sinl_Rep(a1)=Sinl_Rep(a2) ==> a1=a2";
by (case_tac "a1=UU" 1);
by (hyp_subst_tac 1);
by (rtac (inject_Sinl_Rep1 RS sym) 1);
by (etac sym 1);
by (case_tac "a2=UU" 1);
by (hyp_subst_tac 1);
by (etac inject_Sinl_Rep1 1);
by (etac inject_Sinl_Rep2 1);
by (atac 1);
by (atac 1);
qed "inject_Sinl_Rep";
Goal "Sinr_Rep(b1)=Sinr_Rep(b2) ==> b1=b2";
by (case_tac "b1=UU" 1);
by (hyp_subst_tac 1);
by (rtac (inject_Sinr_Rep1 RS sym) 1);
by (etac sym 1);
by (case_tac "b2=UU" 1);
by (hyp_subst_tac 1);
by (etac inject_Sinr_Rep1 1);
by (etac inject_Sinr_Rep2 1);
by (atac 1);
by (atac 1);
qed "inject_Sinr_Rep";
Goalw [Isinl_def] "Isinl(a1)=Isinl(a2)==> a1=a2";
by (rtac inject_Sinl_Rep 1);
by (etac (inj_on_Abs_Ssum RS inj_onD) 1);
by (rtac SsumIl 1);
by (rtac SsumIl 1);
qed "inject_Isinl";
Goalw [Isinr_def] "Isinr(b1)=Isinr(b2) ==> b1=b2";
by (rtac inject_Sinr_Rep 1);
by (etac (inj_on_Abs_Ssum RS inj_onD) 1);
by (rtac SsumIr 1);
by (rtac SsumIr 1);
qed "inject_Isinr";
AddSDs [inject_Isinl, inject_Isinr];
Goal "a1~=a2 ==> Isinl(a1) ~= Isinl(a2)";
by (Blast_tac 1);
qed "inject_Isinl_rev";
Goal "b1~=b2 ==> Isinr(b1) ~= Isinr(b2)";
by (Blast_tac 1);
qed "inject_Isinr_rev";
(* ------------------------------------------------------------------------ *)
(* Exhaustion of the strict sum ++ *)
(* choice of the bottom representation is arbitrary *)
(* ------------------------------------------------------------------------ *)
Goalw [Isinl_def,Isinr_def]
"z=Isinl(UU) | (? a. z=Isinl(a) & a~=UU) | (? b. z=Isinr(b) & b~=UU)";
by (rtac (rewrite_rule [Ssum_def] Rep_Ssum RS CollectE) 1);
by (etac disjE 1);
by (etac exE 1);
by (case_tac "z= Abs_Ssum(Sinl_Rep(UU))" 1);
by (etac disjI1 1);
by (rtac disjI2 1);
by (rtac disjI1 1);
by (rtac exI 1);
by (rtac conjI 1);
by (rtac (Rep_Ssum_inverse RS sym RS trans) 1);
by (etac arg_cong 1);
by (res_inst_tac [("Q","Sinl_Rep(a)=Sinl_Rep(UU)")] contrapos_nn 1);
by (etac arg_cong 2);
by (etac contrapos_nn 1);
by (rtac (Rep_Ssum_inverse RS sym RS trans) 1);
by (rtac trans 1);
by (etac arg_cong 1);
by (etac arg_cong 1);
by (etac exE 1);
by (case_tac "z= Abs_Ssum(Sinl_Rep(UU))" 1);
by (etac disjI1 1);
by (rtac disjI2 1);
by (rtac disjI2 1);
by (rtac exI 1);
by (rtac conjI 1);
by (rtac (Rep_Ssum_inverse RS sym RS trans) 1);
by (etac arg_cong 1);
by (res_inst_tac [("Q","Sinr_Rep(b)=Sinl_Rep(UU)")] contrapos_nn 1);
by (hyp_subst_tac 2);
by (rtac (strict_SinlSinr_Rep RS sym) 2);
by (etac contrapos_nn 1);
by (rtac (Rep_Ssum_inverse RS sym RS trans) 1);
by (rtac trans 1);
by (etac arg_cong 1);
by (etac arg_cong 1);
qed "Exh_Ssum";
(* ------------------------------------------------------------------------ *)
(* elimination rules for the strict sum ++ *)
(* ------------------------------------------------------------------------ *)
val prems = Goal
"[|p=Isinl(UU) ==> Q ;\
\ !!x.[|p=Isinl(x); x~=UU |] ==> Q;\
\ !!y.[|p=Isinr(y); y~=UU |] ==> Q|] ==> Q";
by (rtac (Exh_Ssum RS disjE) 1);
by (etac disjE 2);
by (eresolve_tac prems 1);
by (etac exE 1);
by (etac conjE 1);
by (eresolve_tac prems 1);
by (atac 1);
by (etac exE 1);
by (etac conjE 1);
by (eresolve_tac prems 1);
by (atac 1);
qed "IssumE";
val prems = Goal
"[| !!x. [| p = Isinl(x) |] ==> Q; !!y. [| p = Isinr(y) |] ==> Q |] ==>Q";
by (rtac IssumE 1);
by (eresolve_tac prems 1);
by (eresolve_tac prems 1);
by (eresolve_tac prems 1);
qed "IssumE2";
(* ------------------------------------------------------------------------ *)
(* rewrites for Iwhen *)
(* ------------------------------------------------------------------------ *)
Goalw [Iwhen_def]
"Iwhen f g (Isinl UU) = UU";
by (rtac some_equality 1);
by (rtac conjI 1);
by (fast_tac HOL_cs 1);
by (rtac conjI 1);
by (strip_tac 1);
by (res_inst_tac [("P","a=UU")] notE 1);
by (fast_tac HOL_cs 1);
by (rtac inject_Isinl 1);
by (rtac sym 1);
by (fast_tac HOL_cs 1);
by (strip_tac 1);
by (res_inst_tac [("P","b=UU")] notE 1);
by (fast_tac HOL_cs 1);
by (rtac inject_Isinr 1);
by (rtac sym 1);
by (rtac (strict_IsinlIsinr RS subst) 1);
by (fast_tac HOL_cs 1);
by (fast_tac HOL_cs 1);
qed "Iwhen1";
Goalw [Iwhen_def]
"x~=UU ==> Iwhen f g (Isinl x) = f$x";
by (rtac some_equality 1);
by (fast_tac HOL_cs 2);
by (rtac conjI 1);
by (strip_tac 1);
by (res_inst_tac [("P","x=UU")] notE 1);
by (atac 1);
by (rtac inject_Isinl 1);
by (atac 1);
by (rtac conjI 1);
by (strip_tac 1);
by (rtac cfun_arg_cong 1);
by (rtac inject_Isinl 1);
by (fast_tac HOL_cs 1);
by (strip_tac 1);
by (res_inst_tac [("P","Isinl(x) = Isinr(b)")] notE 1);
by (fast_tac HOL_cs 2);
by (rtac contrapos_nn 1);
by (etac noteq_IsinlIsinr 2);
by (fast_tac HOL_cs 1);
qed "Iwhen2";
Goalw [Iwhen_def]
"y~=UU ==> Iwhen f g (Isinr y) = g$y";
by (rtac some_equality 1);
by (fast_tac HOL_cs 2);
by (rtac conjI 1);
by (strip_tac 1);
by (res_inst_tac [("P","y=UU")] notE 1);
by (atac 1);
by (rtac inject_Isinr 1);
by (rtac (strict_IsinlIsinr RS subst) 1);
by (atac 1);
by (rtac conjI 1);
by (strip_tac 1);
by (res_inst_tac [("P","Isinr(y) = Isinl(a)")] notE 1);
by (fast_tac HOL_cs 2);
by (rtac contrapos_nn 1);
by (etac (sym RS noteq_IsinlIsinr) 2);
by (fast_tac HOL_cs 1);
by (strip_tac 1);
by (rtac cfun_arg_cong 1);
by (rtac inject_Isinr 1);
by (fast_tac HOL_cs 1);
qed "Iwhen3";
(* ------------------------------------------------------------------------ *)
(* instantiate the simplifier *)
(* ------------------------------------------------------------------------ *)
val Ssum0_ss = (simpset_of Cfun3.thy) delsimps [range_composition] addsimps
[(strict_IsinlIsinr RS sym),Iwhen1,Iwhen2,Iwhen3];
Addsimps [strict_IsinlIsinr RS sym, Iwhen1, Iwhen2, Iwhen3];