src/HOLCF/dlist.ML
author wenzelm
Tue, 16 Oct 2001 17:58:13 +0200
changeset 11809 c9ffdd63dd93
parent 298 3a0485439396
permissions -rw-r--r--
tuned induction proofs;

(*  Title: 	HOLCF/dlist.ML
    Author: 	Franz Regensburger
    ID:         $ $
    Copyright   1994 Technische Universitaet Muenchen

Lemmas for dlist.thy
*)

open Dlist;

(* ------------------------------------------------------------------------*)
(* The isomorphisms dlist_rep_iso and dlist_abs_iso are strict             *)
(* ------------------------------------------------------------------------*)

val dlist_iso_strict= dlist_rep_iso RS (dlist_abs_iso RS 
	(allI  RSN (2,allI RS iso_strict)));

val dlist_rews = [dlist_iso_strict RS conjunct1,
		dlist_iso_strict RS conjunct2];

(* ------------------------------------------------------------------------*)
(* Properties of dlist_copy                                                *)
(* ------------------------------------------------------------------------*)

val temp = prove_goalw Dlist.thy  [dlist_copy_def] "dlist_copy[f][UU]=UU"
 (fn prems =>
	[
	(asm_simp_tac (HOLCF_ss addsimps 
		(dlist_rews @ [dlist_abs_iso,dlist_rep_iso])) 1)
	]);

val dlist_copy = [temp];


val temp = prove_goalw Dlist.thy  [dlist_copy_def,dnil_def] 
    "dlist_copy[f][dnil]=dnil"
 (fn prems =>
	[
	(asm_simp_tac (HOLCF_ss addsimps 
		(dlist_rews @ [dlist_abs_iso,dlist_rep_iso])) 1)
	]);

val dlist_copy = temp :: dlist_copy;


val temp = prove_goalw Dlist.thy  [dlist_copy_def,dcons_def] 
	"xl~=UU ==> dlist_copy[f][dcons[x][xl]]= dcons[x][f[xl]]"
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(asm_simp_tac (HOLCF_ss addsimps 
		(dlist_rews @ [dlist_abs_iso,dlist_rep_iso])) 1),
	(res_inst_tac [("Q","x=UU")] classical2 1),
	(asm_simp_tac HOLCF_ss  1),
	(asm_simp_tac (HOLCF_ss addsimps [defined_spair]) 1)
	]);

val dlist_copy = temp :: dlist_copy;

val dlist_rews =  dlist_copy @ dlist_rews; 

(* ------------------------------------------------------------------------*)
(* Exhaustion and elimination for dlists                                   *)
(* ------------------------------------------------------------------------*)

val Exh_dlist = prove_goalw Dlist.thy [dcons_def,dnil_def]
	"l = UU | l = dnil | (? x xl. x~=UU &xl~=UU & l = dcons[x][xl])"
 (fn prems =>
	[
	(simp_tac HOLCF_ss  1),
	(rtac (dlist_rep_iso RS subst) 1),
	(res_inst_tac [("p","dlist_rep[l]")] ssumE 1),
	(rtac disjI1 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(rtac disjI2 1),
	(rtac disjI1 1),
	(res_inst_tac [("p","x")] oneE 1),
	(contr_tac 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(rtac disjI2 1),
	(rtac disjI2 1),
	(res_inst_tac [("p","y")] sprodE 1),
	(contr_tac 1),
	(rtac exI 1),
	(rtac exI 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(fast_tac HOL_cs 1)
	]);


val dlistE = prove_goal Dlist.thy 
"[| l=UU ==> Q; l=dnil ==> Q;!!x xl.[|l=dcons[x][xl];x~=UU;xl~=UU|]==>Q|]==>Q"
 (fn prems =>
	[
	(rtac (Exh_dlist RS disjE) 1),
	(eresolve_tac prems 1),
	(etac disjE 1),
	(eresolve_tac prems 1),
	(etac exE 1),
	(etac exE 1),
	(resolve_tac prems 1),
	(fast_tac HOL_cs 1),
	(fast_tac HOL_cs 1),
	(fast_tac HOL_cs 1)
	]);

(* ------------------------------------------------------------------------*)
(* Properties of dlist_when                                                *)
(* ------------------------------------------------------------------------*)

val temp = prove_goalw  Dlist.thy  [dlist_when_def] "dlist_when[f1][f2][UU]=UU"
 (fn prems =>
	[
	(asm_simp_tac (HOLCF_ss addsimps [dlist_iso_strict]) 1)
	]);

val dlist_when = [temp];

val temp = prove_goalw  Dlist.thy [dlist_when_def,dnil_def]
 "dlist_when[f1][f2][dnil]= f1"
 (fn prems =>
	[
	(asm_simp_tac (HOLCF_ss addsimps [dlist_abs_iso]) 1)
	]);

val dlist_when = temp::dlist_when;

val temp = prove_goalw  Dlist.thy [dlist_when_def,dcons_def]
 "[|x~=UU;xl~=UU|] ==> dlist_when[f1][f2][dcons[x][xl]]= f2[x][xl]"
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(asm_simp_tac (HOLCF_ss addsimps [dlist_abs_iso,defined_spair]) 1)
	]);

val dlist_when = temp::dlist_when;

val dlist_rews = dlist_when @ dlist_rews;

(* ------------------------------------------------------------------------*)
(* Rewrites for  discriminators and  selectors                             *)
(* ------------------------------------------------------------------------*)

fun prover defs thm = prove_goalw Dlist.thy defs thm
 (fn prems =>
	[
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_discsel = [
	prover [is_dnil_def] "is_dnil[UU]=UU",
	prover [is_dcons_def] "is_dcons[UU]=UU",
	prover [dhd_def] "dhd[UU]=UU",
	prover [dtl_def] "dtl[UU]=UU"
	];

fun prover defs thm = prove_goalw Dlist.thy defs thm
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_discsel = [
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  "is_dnil[dnil]=TT",
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  "[|x~=UU;xl~=UU|] ==> is_dnil[dcons[x][xl]]=FF",
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  "is_dcons[dnil]=FF",
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  "[|x~=UU;xl~=UU|] ==> is_dcons[dcons[x][xl]]=TT",
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  "dhd[dnil]=UU",
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  "[|x~=UU;xl~=UU|] ==> dhd[dcons[x][xl]]=x",
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  "dtl[dnil]=UU",
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  "[|x~=UU;xl~=UU|] ==> dtl[dcons[x][xl]]=xl"] @ dlist_discsel;

val dlist_rews = dlist_discsel @ dlist_rews;

(* ------------------------------------------------------------------------*)
(* Definedness and strictness                                              *)
(* ------------------------------------------------------------------------*)

fun prover contr thm = prove_goal Dlist.thy thm
 (fn prems =>
	[
	(res_inst_tac [("P1",contr)] classical3 1),
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(dtac sym 1),
	(asm_simp_tac HOLCF_ss  1),
	(simp_tac (HOLCF_ss addsimps (prems @ dlist_rews)) 1)
	]);


val dlist_constrdef = [
prover "is_dnil[UU] ~= UU" "dnil~=UU",
prover "is_dcons[UU] ~= UU" "[|x~=UU;xl~=UU|] ==> dcons[x][xl]~=UU"
 ];


fun prover defs thm = prove_goalw Dlist.thy defs thm
 (fn prems =>
	[
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_constrdef = [
	prover [dcons_def] "dcons[UU][xl]=UU",
	prover [dcons_def] "dcons[x][UU]=UU"
	] @ dlist_constrdef;

val dlist_rews = dlist_constrdef @ dlist_rews;


(* ------------------------------------------------------------------------*)
(* Distinctness wrt. << and =                                              *)
(* ------------------------------------------------------------------------*)

val temp = prove_goal Dlist.thy  "~dnil << dcons[x][xl]"
 (fn prems =>
	[
	(res_inst_tac [("P1","TT << FF")] classical3 1),
	(resolve_tac dist_less_tr 1),
	(dres_inst_tac [("fo5","is_dnil")] monofun_cfun_arg 1),
	(etac box_less 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(res_inst_tac [("Q","x=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(res_inst_tac [("Q","xl=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_dist_less = [temp];

val temp = prove_goal Dlist.thy  "[|x~=UU;xl~=UU|]==>~dcons[x][xl] << dnil"
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(res_inst_tac [("P1","TT << FF")] classical3 1),
	(resolve_tac dist_less_tr 1),
	(dres_inst_tac [("fo5","is_dcons")] monofun_cfun_arg 1),
	(etac box_less 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_dist_less = temp::dlist_dist_less;

val temp = prove_goal Dlist.thy  "dnil ~= dcons[x][xl]"
 (fn prems =>
	[
	(res_inst_tac [("Q","x=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(res_inst_tac [("Q","xl=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(res_inst_tac [("P1","TT = FF")] classical3 1),
	(resolve_tac dist_eq_tr 1),
	(dres_inst_tac [("f","is_dnil")] cfun_arg_cong 1),
	(etac box_equals 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_dist_eq = [temp,temp RS not_sym];

val dlist_rews = dlist_dist_less @ dlist_dist_eq @ dlist_rews;

(* ------------------------------------------------------------------------*)
(* Invertibility                                                           *)
(* ------------------------------------------------------------------------*)

val temp = prove_goal Dlist.thy "[|x1~=UU; y1~=UU;x2~=UU; y2~=UU;\
\ dcons[x1][x2] << dcons[y1][y2]|] ==> x1<< y1 & x2 << y2"
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac conjI 1),
	(dres_inst_tac [("fo5","dlist_when[UU][LAM x l.x]")] monofun_cfun_arg 1),
	(etac box_less 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
	(dres_inst_tac [("fo5","dlist_when[UU][LAM x l.l]")] monofun_cfun_arg 1),
	(etac box_less 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1)
	]);

val dlist_invert =[temp];

(* ------------------------------------------------------------------------*)
(* Injectivity                                                             *)
(* ------------------------------------------------------------------------*)

val temp = prove_goal Dlist.thy "[|x1~=UU; y1~=UU;x2~=UU; y2~=UU;\
\ dcons[x1][x2] = dcons[y1][y2]|] ==> x1= y1 & x2 = y2"
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac conjI 1),
	(dres_inst_tac [("f","dlist_when[UU][LAM x l.x]")] cfun_arg_cong 1),
	(etac box_equals 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
	(dres_inst_tac [("f","dlist_when[UU][LAM x l.l]")] cfun_arg_cong 1),
	(etac box_equals 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1)
	]);

val dlist_inject = [temp];
 

(* ------------------------------------------------------------------------*)
(* definedness for  discriminators and  selectors                          *)
(* ------------------------------------------------------------------------*)

fun prover thm = prove_goal Dlist.thy thm
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac dlistE 1),
	(contr_tac 1),
	(REPEAT (asm_simp_tac (HOLCF_ss addsimps dlist_discsel) 1))
	]);

val dlist_discsel_def = 
	[
	prover "l~=UU ==> is_dnil[l]~=UU", 
	prover "l~=UU ==> is_dcons[l]~=UU" 
	];

val dlist_rews = dlist_discsel_def @ dlist_rews;

(* ------------------------------------------------------------------------*)
(* enhance the simplifier                                                  *)
(* ------------------------------------------------------------------------*)

val dhd2 = prove_goal Dlist.thy "xl~=UU ==> dhd[dcons[x][xl]]=x"
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(res_inst_tac [("Q","x=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dtl2 = prove_goal Dlist.thy "x~=UU ==> dtl[dcons[x][xl]]=xl"
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(res_inst_tac [("Q","xl=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_rews = dhd2 :: dtl2 :: dlist_rews;

(* ------------------------------------------------------------------------*)
(* Properties dlist_take                                                   *)
(* ------------------------------------------------------------------------*)

val temp = prove_goalw Dlist.thy [dlist_take_def] "dlist_take(n)[UU]=UU"
 (fn prems =>
	[
	(res_inst_tac [("n","n")] natE 1),
	(asm_simp_tac iterate_ss 1),
	(asm_simp_tac iterate_ss 1),
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_take = [temp];

val temp = prove_goalw Dlist.thy [dlist_take_def] "dlist_take(0)[xs]=UU"
 (fn prems =>
	[
	(asm_simp_tac iterate_ss 1)
	]);

val dlist_take = temp::dlist_take;

val temp = prove_goalw Dlist.thy [dlist_take_def]
	"dlist_take(Suc(n))[dnil]=dnil"
 (fn prems =>
	[
	(asm_simp_tac iterate_ss 1),
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_take = temp::dlist_take;

val temp = prove_goalw Dlist.thy [dlist_take_def]
  "dlist_take(Suc(n))[dcons[x][xl]]=dcons[x][dlist_take(n)[xl]]"
 (fn prems =>
	[
	(res_inst_tac [("Q","x=UU")] classical2 1),
	(asm_simp_tac iterate_ss 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(res_inst_tac [("Q","xl=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac iterate_ss 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(res_inst_tac [("n","n")] natE 1),
	(asm_simp_tac iterate_ss 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac iterate_ss 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac iterate_ss 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_take = temp::dlist_take;

val dlist_rews = dlist_take @ dlist_rews;

(* ------------------------------------------------------------------------*)
(* take lemma for dlists                                                  *)
(* ------------------------------------------------------------------------*)

fun prover reach defs thm  = prove_goalw Dlist.thy defs thm
 (fn prems =>
	[
	(res_inst_tac [("t","l1")] (reach RS subst) 1),
	(res_inst_tac [("t","l2")] (reach RS subst) 1),
	(rtac (fix_def2 RS ssubst) 1),
	(rtac (contlub_cfun_fun RS ssubst) 1),
	(rtac is_chain_iterate 1),
	(rtac (contlub_cfun_fun RS ssubst) 1),
	(rtac is_chain_iterate 1),
	(rtac lub_equal 1),
	(rtac (is_chain_iterate RS ch2ch_fappL) 1),
	(rtac (is_chain_iterate RS ch2ch_fappL) 1),
	(rtac allI 1),
	(resolve_tac prems 1)
	]);

val dlist_take_lemma = prover dlist_reach  [dlist_take_def]
	"(!!n.dlist_take(n)[l1]=dlist_take(n)[l2]) ==> l1=l2";


(* ------------------------------------------------------------------------*)
(* Co -induction for dlists                                               *)
(* ------------------------------------------------------------------------*)

val dlist_coind_lemma = prove_goalw Dlist.thy [dlist_bisim_def] 
"dlist_bisim(R) ==> ! p q.R(p,q) --> dlist_take(n)[p]=dlist_take(n)[q]"
 (fn prems =>
	[
	(cut_facts_tac prems 1),
	(nat_ind_tac "n" 1),
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(strip_tac 1),
	((etac allE 1) THEN (etac allE 1) THEN (etac (mp RS disjE) 1)),
	(atac 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(etac disjE 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(etac exE 1),
	(etac exE 1),
	(etac exE 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(REPEAT (etac conjE 1)),
	(rtac cfun_arg_cong 1),
	(fast_tac HOL_cs 1)
	]);

val dlist_coind = prove_goal Dlist.thy "[|dlist_bisim(R);R(p,q)|] ==> p = q"
 (fn prems =>
	[
	(rtac dlist_take_lemma 1),
	(rtac (dlist_coind_lemma RS spec RS spec RS mp) 1),
	(resolve_tac prems 1),
	(resolve_tac prems 1)
	]);

(* ------------------------------------------------------------------------*)
(* structural induction                                                    *)
(* ------------------------------------------------------------------------*)

val dlist_finite_ind = prove_goal Dlist.thy
"[|P(UU);P(dnil);\
\  !! x l1.[|x~=UU;l1~=UU;P(l1)|] ==> P(dcons[x][l1])\
\  |] ==> !l.P(dlist_take(n)[l])"
 (fn prems =>
	[
	(nat_ind_tac "n" 1),
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(resolve_tac prems 1),
	(rtac allI 1),
	(res_inst_tac [("l","l")] dlistE 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(resolve_tac prems 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(resolve_tac prems 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(res_inst_tac [("Q","dlist_take(n1)[xl]=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(resolve_tac prems 1),
	(resolve_tac prems 1),
	(atac 1),
	(atac 1),
	(etac spec 1)
	]);

val dlist_all_finite_lemma1 = prove_goal Dlist.thy
"!l.dlist_take(n)[l]=UU |dlist_take(n)[l]=l"
 (fn prems =>
	[
	(nat_ind_tac "n" 1),
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(rtac allI 1),
	(res_inst_tac [("l","l")] dlistE 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(eres_inst_tac [("x","xl")] allE 1),
	(etac disjE 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
	]);

val dlist_all_finite_lemma2 = prove_goal Dlist.thy "? n.dlist_take(n)[l]=l"
 (fn prems =>
	[
	(res_inst_tac [("Q","l=UU")] classical2 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(subgoal_tac "(!n.dlist_take(n)[l]=UU) |(? n.dlist_take(n)[l]=l)" 1),
	(etac disjE 1),
	(eres_inst_tac [("P","l=UU")] notE 1),
	(rtac dlist_take_lemma 1),
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
	(atac 1),
	(subgoal_tac "!n.!l.dlist_take(n)[l]=UU |dlist_take(n)[l]=l" 1),
	(fast_tac HOL_cs 1),
	(rtac allI 1),
	(rtac dlist_all_finite_lemma1 1)
	]);

val dlist_all_finite= prove_goalw Dlist.thy [dlist_finite_def] "dlist_finite(l)"
 (fn prems =>
	[
	(rtac  dlist_all_finite_lemma2 1)
	]);

val dlist_ind = prove_goal Dlist.thy
"[|P(UU);P(dnil);\
\  !! x l1.[|x~=UU;l1~=UU;P(l1)|] ==> P(dcons[x][l1])|] ==> P(l)"
 (fn prems =>
	[
	(rtac (dlist_all_finite_lemma2 RS exE) 1),
	(etac subst 1),
	(rtac (dlist_finite_ind RS spec) 1),
	(REPEAT (resolve_tac prems 1)),
	(REPEAT (atac 1))
	]);