configuration option "show_abbrevs" supersedes print mode "no_abbrevs", with inverted meaning;
(* Title: CTT/Arith.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
*)
header {* Elementary arithmetic *}
theory Arith
imports Bool
begin
subsection {* Arithmetic operators and their definitions *}
definition
add :: "[i,i]=>i" (infixr "#+" 65) where
"a#+b == rec(a, b, %u v. succ(v))"
definition
diff :: "[i,i]=>i" (infixr "-" 65) where
"a-b == rec(b, a, %u v. rec(v, 0, %x y. x))"
definition
absdiff :: "[i,i]=>i" (infixr "|-|" 65) where
"a|-|b == (a-b) #+ (b-a)"
definition
mult :: "[i,i]=>i" (infixr "#*" 70) where
"a#*b == rec(a, 0, %u v. b #+ v)"
definition
mod :: "[i,i]=>i" (infixr "mod" 70) where
"a mod b == rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))"
definition
div :: "[i,i]=>i" (infixr "div" 70) where
"a div b == rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))"
notation (xsymbols)
mult (infixr "#\<times>" 70)
notation (HTML output)
mult (infixr "#\<times>" 70)
lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def
subsection {* Proofs about elementary arithmetic: addition, multiplication, etc. *}
(** Addition *)
(*typing of add: short and long versions*)
lemma add_typing: "[| a:N; b:N |] ==> a #+ b : N"
apply (unfold arith_defs)
apply (tactic "typechk_tac []")
done
lemma add_typingL: "[| a=c:N; b=d:N |] ==> a #+ b = c #+ d : N"
apply (unfold arith_defs)
apply (tactic "equal_tac []")
done
(*computation for add: 0 and successor cases*)
lemma addC0: "b:N ==> 0 #+ b = b : N"
apply (unfold arith_defs)
apply (tactic "rew_tac []")
done
lemma addC_succ: "[| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N"
apply (unfold arith_defs)
apply (tactic "rew_tac []")
done
(** Multiplication *)
(*typing of mult: short and long versions*)
lemma mult_typing: "[| a:N; b:N |] ==> a #* b : N"
apply (unfold arith_defs)
apply (tactic {* typechk_tac [@{thm add_typing}] *})
done
lemma mult_typingL: "[| a=c:N; b=d:N |] ==> a #* b = c #* d : N"
apply (unfold arith_defs)
apply (tactic {* equal_tac [@{thm add_typingL}] *})
done
(*computation for mult: 0 and successor cases*)
lemma multC0: "b:N ==> 0 #* b = 0 : N"
apply (unfold arith_defs)
apply (tactic "rew_tac []")
done
lemma multC_succ: "[| a:N; b:N |] ==> succ(a) #* b = b #+ (a #* b) : N"
apply (unfold arith_defs)
apply (tactic "rew_tac []")
done
(** Difference *)
(*typing of difference*)
lemma diff_typing: "[| a:N; b:N |] ==> a - b : N"
apply (unfold arith_defs)
apply (tactic "typechk_tac []")
done
lemma diff_typingL: "[| a=c:N; b=d:N |] ==> a - b = c - d : N"
apply (unfold arith_defs)
apply (tactic "equal_tac []")
done
(*computation for difference: 0 and successor cases*)
lemma diffC0: "a:N ==> a - 0 = a : N"
apply (unfold arith_defs)
apply (tactic "rew_tac []")
done
(*Note: rec(a, 0, %z w.z) is pred(a). *)
lemma diff_0_eq_0: "b:N ==> 0 - b = 0 : N"
apply (unfold arith_defs)
apply (tactic {* NE_tac @{context} "b" 1 *})
apply (tactic "hyp_rew_tac []")
done
(*Essential to simplify FIRST!! (Else we get a critical pair)
succ(a) - succ(b) rewrites to pred(succ(a) - b) *)
lemma diff_succ_succ: "[| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N"
apply (unfold arith_defs)
apply (tactic "hyp_rew_tac []")
apply (tactic {* NE_tac @{context} "b" 1 *})
apply (tactic "hyp_rew_tac []")
done
subsection {* Simplification *}
lemmas arith_typing_rls = add_typing mult_typing diff_typing
and arith_congr_rls = add_typingL mult_typingL diff_typingL
lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls
lemmas arithC_rls =
addC0 addC_succ
multC0 multC_succ
diffC0 diff_0_eq_0 diff_succ_succ
ML {*
structure Arith_simp_data: TSIMP_DATA =
struct
val refl = @{thm refl_elem}
val sym = @{thm sym_elem}
val trans = @{thm trans_elem}
val refl_red = @{thm refl_red}
val trans_red = @{thm trans_red}
val red_if_equal = @{thm red_if_equal}
val default_rls = @{thms arithC_rls} @ @{thms comp_rls}
val routine_tac = routine_tac (@{thms arith_typing_rls} @ @{thms routine_rls})
end
structure Arith_simp = TSimpFun (Arith_simp_data)
local val congr_rls = @{thms congr_rls} in
fun arith_rew_tac prems = make_rew_tac
(Arith_simp.norm_tac(congr_rls, prems))
fun hyp_arith_rew_tac prems = make_rew_tac
(Arith_simp.cond_norm_tac(prove_cond_tac, congr_rls, prems))
end
*}
subsection {* Addition *}
(*Associative law for addition*)
lemma add_assoc: "[| a:N; b:N; c:N |] ==> (a #+ b) #+ c = a #+ (b #+ c) : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic "hyp_arith_rew_tac []")
done
(*Commutative law for addition. Can be proved using three inductions.
Must simplify after first induction! Orientation of rewrites is delicate*)
lemma add_commute: "[| a:N; b:N |] ==> a #+ b = b #+ a : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic "hyp_arith_rew_tac []")
apply (tactic {* NE_tac @{context} "b" 2 *})
apply (rule sym_elem)
apply (tactic {* NE_tac @{context} "b" 1 *})
apply (tactic "hyp_arith_rew_tac []")
done
subsection {* Multiplication *}
(*right annihilation in product*)
lemma mult_0_right: "a:N ==> a #* 0 = 0 : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic "hyp_arith_rew_tac []")
done
(*right successor law for multiplication*)
lemma mult_succ_right: "[| a:N; b:N |] ==> a #* succ(b) = a #+ (a #* b) : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic {* hyp_arith_rew_tac [@{thm add_assoc} RS @{thm sym_elem}] *})
apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+
done
(*Commutative law for multiplication*)
lemma mult_commute: "[| a:N; b:N |] ==> a #* b = b #* a : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic {* hyp_arith_rew_tac [@{thm mult_0_right}, @{thm mult_succ_right}] *})
done
(*addition distributes over multiplication*)
lemma add_mult_distrib: "[| a:N; b:N; c:N |] ==> (a #+ b) #* c = (a #* c) #+ (b #* c) : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic {* hyp_arith_rew_tac [@{thm add_assoc} RS @{thm sym_elem}] *})
done
(*Associative law for multiplication*)
lemma mult_assoc: "[| a:N; b:N; c:N |] ==> (a #* b) #* c = a #* (b #* c) : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic {* hyp_arith_rew_tac [@{thm add_mult_distrib}] *})
done
subsection {* Difference *}
text {*
Difference on natural numbers, without negative numbers
a - b = 0 iff a<=b a - b = succ(c) iff a>b *}
lemma diff_self_eq_0: "a:N ==> a - a = 0 : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic "hyp_arith_rew_tac []")
done
lemma add_0_right: "[| c : N; 0 : N; c : N |] ==> c #+ 0 = c : N"
by (rule addC0 [THEN [3] add_commute [THEN trans_elem]])
(*Addition is the inverse of subtraction: if b<=x then b#+(x-b) = x.
An example of induction over a quantified formula (a product).
Uses rewriting with a quantified, implicative inductive hypothesis.*)
schematic_lemma add_diff_inverse_lemma:
"b:N ==> ?a : PROD x:N. Eq(N, b-x, 0) --> Eq(N, b #+ (x-b), x)"
apply (tactic {* NE_tac @{context} "b" 1 *})
(*strip one "universal quantifier" but not the "implication"*)
apply (rule_tac [3] intr_rls)
(*case analysis on x in
(succ(u) <= x) --> (succ(u)#+(x-succ(u)) = x) *)
apply (tactic {* NE_tac @{context} "x" 4 *}, tactic "assume_tac 4")
(*Prepare for simplification of types -- the antecedent succ(u)<=x *)
apply (rule_tac [5] replace_type)
apply (rule_tac [4] replace_type)
apply (tactic "arith_rew_tac []")
(*Solves first 0 goal, simplifies others. Two sugbgoals remain.
Both follow by rewriting, (2) using quantified induction hyp*)
apply (tactic "intr_tac []") (*strips remaining PRODs*)
apply (tactic {* hyp_arith_rew_tac [@{thm add_0_right}] *})
apply assumption
done
(*Version of above with premise b-a=0 i.e. a >= b.
Using ProdE does not work -- for ?B(?a) is ambiguous.
Instead, add_diff_inverse_lemma states the desired induction scheme
the use of RS below instantiates Vars in ProdE automatically. *)
lemma add_diff_inverse: "[| a:N; b:N; b-a = 0 : N |] ==> b #+ (a-b) = a : N"
apply (rule EqE)
apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE])
apply (assumption | rule EqI)+
done
subsection {* Absolute difference *}
(*typing of absolute difference: short and long versions*)
lemma absdiff_typing: "[| a:N; b:N |] ==> a |-| b : N"
apply (unfold arith_defs)
apply (tactic "typechk_tac []")
done
lemma absdiff_typingL: "[| a=c:N; b=d:N |] ==> a |-| b = c |-| d : N"
apply (unfold arith_defs)
apply (tactic "equal_tac []")
done
lemma absdiff_self_eq_0: "a:N ==> a |-| a = 0 : N"
apply (unfold absdiff_def)
apply (tactic {* arith_rew_tac [@{thm diff_self_eq_0}] *})
done
lemma absdiffC0: "a:N ==> 0 |-| a = a : N"
apply (unfold absdiff_def)
apply (tactic "hyp_arith_rew_tac []")
done
lemma absdiff_succ_succ: "[| a:N; b:N |] ==> succ(a) |-| succ(b) = a |-| b : N"
apply (unfold absdiff_def)
apply (tactic "hyp_arith_rew_tac []")
done
(*Note how easy using commutative laws can be? ...not always... *)
lemma absdiff_commute: "[| a:N; b:N |] ==> a |-| b = b |-| a : N"
apply (unfold absdiff_def)
apply (rule add_commute)
apply (tactic {* typechk_tac [@{thm diff_typing}] *})
done
(*If a+b=0 then a=0. Surprisingly tedious*)
schematic_lemma add_eq0_lemma: "[| a:N; b:N |] ==> ?c : PROD u: Eq(N,a#+b,0) . Eq(N,a,0)"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (rule_tac [3] replace_type)
apply (tactic "arith_rew_tac []")
apply (tactic "intr_tac []") (*strips remaining PRODs*)
apply (rule_tac [2] zero_ne_succ [THEN FE])
apply (erule_tac [3] EqE [THEN sym_elem])
apply (tactic {* typechk_tac [@{thm add_typing}] *})
done
(*Version of above with the premise a+b=0.
Again, resolution instantiates variables in ProdE *)
lemma add_eq0: "[| a:N; b:N; a #+ b = 0 : N |] ==> a = 0 : N"
apply (rule EqE)
apply (rule add_eq0_lemma [THEN ProdE])
apply (rule_tac [3] EqI)
apply (tactic "typechk_tac []")
done
(*Here is a lemma to infer a-b=0 and b-a=0 from a|-|b=0, below. *)
schematic_lemma absdiff_eq0_lem:
"[| a:N; b:N; a |-| b = 0 : N |] ==>
?a : SUM v: Eq(N, a-b, 0) . Eq(N, b-a, 0)"
apply (unfold absdiff_def)
apply (tactic "intr_tac []")
apply (tactic eqintr_tac)
apply (rule_tac [2] add_eq0)
apply (rule add_eq0)
apply (rule_tac [6] add_commute [THEN trans_elem])
apply (tactic {* typechk_tac [@{thm diff_typing}] *})
done
(*if a |-| b = 0 then a = b
proof: a-b=0 and b-a=0, so b = a+(b-a) = a+0 = a*)
lemma absdiff_eq0: "[| a |-| b = 0 : N; a:N; b:N |] ==> a = b : N"
apply (rule EqE)
apply (rule absdiff_eq0_lem [THEN SumE])
apply (tactic "TRYALL assume_tac")
apply (tactic eqintr_tac)
apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem])
apply (rule_tac [3] EqE, tactic "assume_tac 3")
apply (tactic {* hyp_arith_rew_tac [@{thm add_0_right}] *})
done
subsection {* Remainder and Quotient *}
(*typing of remainder: short and long versions*)
lemma mod_typing: "[| a:N; b:N |] ==> a mod b : N"
apply (unfold mod_def)
apply (tactic {* typechk_tac [@{thm absdiff_typing}] *})
done
lemma mod_typingL: "[| a=c:N; b=d:N |] ==> a mod b = c mod d : N"
apply (unfold mod_def)
apply (tactic {* equal_tac [@{thm absdiff_typingL}] *})
done
(*computation for mod : 0 and successor cases*)
lemma modC0: "b:N ==> 0 mod b = 0 : N"
apply (unfold mod_def)
apply (tactic {* rew_tac [@{thm absdiff_typing}] *})
done
lemma modC_succ:
"[| a:N; b:N |] ==> succ(a) mod b = rec(succ(a mod b) |-| b, 0, %x y. succ(a mod b)) : N"
apply (unfold mod_def)
apply (tactic {* rew_tac [@{thm absdiff_typing}] *})
done
(*typing of quotient: short and long versions*)
lemma div_typing: "[| a:N; b:N |] ==> a div b : N"
apply (unfold div_def)
apply (tactic {* typechk_tac [@{thm absdiff_typing}, @{thm mod_typing}] *})
done
lemma div_typingL: "[| a=c:N; b=d:N |] ==> a div b = c div d : N"
apply (unfold div_def)
apply (tactic {* equal_tac [@{thm absdiff_typingL}, @{thm mod_typingL}] *})
done
lemmas div_typing_rls = mod_typing div_typing absdiff_typing
(*computation for quotient: 0 and successor cases*)
lemma divC0: "b:N ==> 0 div b = 0 : N"
apply (unfold div_def)
apply (tactic {* rew_tac [@{thm mod_typing}, @{thm absdiff_typing}] *})
done
lemma divC_succ:
"[| a:N; b:N |] ==> succ(a) div b =
rec(succ(a) mod b, succ(a div b), %x y. a div b) : N"
apply (unfold div_def)
apply (tactic {* rew_tac [@{thm mod_typing}] *})
done
(*Version of above with same condition as the mod one*)
lemma divC_succ2: "[| a:N; b:N |] ==>
succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), %x y. a div b) : N"
apply (rule divC_succ [THEN trans_elem])
apply (tactic {* rew_tac (@{thms div_typing_rls} @ [@{thm modC_succ}]) *})
apply (tactic {* NE_tac @{context} "succ (a mod b) |-|b" 1 *})
apply (tactic {* rew_tac [@{thm mod_typing}, @{thm div_typing}, @{thm absdiff_typing}] *})
done
(*for case analysis on whether a number is 0 or a successor*)
lemma iszero_decidable: "a:N ==> rec(a, inl(eq), %ka kb. inr(<ka, eq>)) :
Eq(N,a,0) + (SUM x:N. Eq(N,a, succ(x)))"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (rule_tac [3] PlusI_inr)
apply (rule_tac [2] PlusI_inl)
apply (tactic eqintr_tac)
apply (tactic "equal_tac []")
done
(*Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0 *)
lemma mod_div_equality: "[| a:N; b:N |] ==> a mod b #+ (a div b) #* b = a : N"
apply (tactic {* NE_tac @{context} "a" 1 *})
apply (tactic {* arith_rew_tac (@{thms div_typing_rls} @
[@{thm modC0}, @{thm modC_succ}, @{thm divC0}, @{thm divC_succ2}]) *})
apply (rule EqE)
(*case analysis on succ(u mod b)|-|b *)
apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE])
apply (erule_tac [3] SumE)
apply (tactic {* hyp_arith_rew_tac (@{thms div_typing_rls} @
[@{thm modC0}, @{thm modC_succ}, @{thm divC0}, @{thm divC_succ2}]) *})
(*Replace one occurence of b by succ(u mod b). Clumsy!*)
apply (rule add_typingL [THEN trans_elem])
apply (erule EqE [THEN absdiff_eq0, THEN sym_elem])
apply (rule_tac [3] refl_elem)
apply (tactic {* hyp_arith_rew_tac @{thms div_typing_rls} *})
done
end