(* Title: HOL/HOLCF/Tools/holcf_library.ML
Author: Brian Huffman
Functions for constructing HOLCF types and terms.
*)
structure HOLCF_Library =
struct
infixr 6 ->>
infixr -->>
infix 9 `
(*** Operations from Isabelle/HOL ***)
val boolT = HOLogic.boolT
val natT = HOLogic.natT
val mk_setT = HOLogic.mk_setT
val mk_equals = Logic.mk_equals
val mk_eq = HOLogic.mk_eq
val mk_trp = HOLogic.mk_Trueprop
val mk_fst = HOLogic.mk_fst
val mk_snd = HOLogic.mk_snd
val mk_not = HOLogic.mk_not
val mk_conj = HOLogic.mk_conj
val mk_disj = HOLogic.mk_disj
val mk_imp = HOLogic.mk_imp
fun mk_ex (x, t) = HOLogic.exists_const (fastype_of x) $ Term.lambda x t
fun mk_all (x, t) = HOLogic.all_const (fastype_of x) $ Term.lambda x t
(*** Basic HOLCF concepts ***)
fun mk_bottom T = Const (@{const_name bottom}, T)
fun below_const T = Const (@{const_name below}, [T, T] ---> boolT)
fun mk_below (t, u) = below_const (fastype_of t) $ t $ u
fun mk_undef t = mk_eq (t, mk_bottom (fastype_of t))
fun mk_defined t = mk_not (mk_undef t)
fun mk_adm t =
Const (@{const_name adm}, fastype_of t --> boolT) $ t
fun mk_compact t =
Const (@{const_name compact}, fastype_of t --> boolT) $ t
fun mk_cont t =
Const (@{const_name cont}, fastype_of t --> boolT) $ t
fun mk_chain t =
Const (@{const_name chain}, Term.fastype_of t --> boolT) $ t
fun mk_lub t =
let
val T = Term.range_type (Term.fastype_of t)
val lub_const = Const (@{const_name lub}, mk_setT T --> T)
val UNIV_const = @{term "UNIV :: nat set"}
val image_type = (natT --> T) --> mk_setT natT --> mk_setT T
val image_const = Const (@{const_name image}, image_type)
in
lub_const $ (image_const $ t $ UNIV_const)
end
(*** Continuous function space ***)
fun mk_cfunT (T, U) = Type(@{type_name cfun}, [T, U])
val (op ->>) = mk_cfunT
val (op -->>) = Library.foldr mk_cfunT
fun dest_cfunT (Type(@{type_name cfun}, [T, U])) = (T, U)
| dest_cfunT T = raise TYPE ("dest_cfunT", [T], [])
fun capply_const (S, T) =
Const(@{const_name Rep_cfun}, (S ->> T) --> (S --> T))
fun cabs_const (S, T) =
Const(@{const_name Abs_cfun}, (S --> T) --> (S ->> T))
fun mk_cabs t =
let val T = fastype_of t
in cabs_const (Term.dest_funT T) $ t end
(* builds the expression (% v1 v2 .. vn. rhs) *)
fun lambdas [] rhs = rhs
| lambdas (v::vs) rhs = Term.lambda v (lambdas vs rhs)
(* builds the expression (LAM v. rhs) *)
fun big_lambda v rhs =
cabs_const (fastype_of v, fastype_of rhs) $ Term.lambda v rhs
(* builds the expression (LAM v1 v2 .. vn. rhs) *)
fun big_lambdas [] rhs = rhs
| big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs)
fun mk_capply (t, u) =
let val (S, T) =
case fastype_of t of
Type(@{type_name cfun}, [S, T]) => (S, T)
| _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u])
in capply_const (S, T) $ t $ u end
val (op `) = mk_capply
val list_ccomb : term * term list -> term = Library.foldl mk_capply
fun mk_ID T = Const (@{const_name ID}, T ->> T)
fun cfcomp_const (T, U, V) =
Const (@{const_name cfcomp}, (U ->> V) ->> (T ->> U) ->> (T ->> V))
fun mk_cfcomp (f, g) =
let
val (U, V) = dest_cfunT (fastype_of f)
val (T, U') = dest_cfunT (fastype_of g)
in
if U = U'
then mk_capply (mk_capply (cfcomp_const (T, U, V), f), g)
else raise TYPE ("mk_cfcomp", [U, U'], [f, g])
end
fun strictify_const T = Const (@{const_name strictify}, T ->> T)
fun mk_strictify t = strictify_const (fastype_of t) ` t
fun mk_strict t =
let val (T, U) = dest_cfunT (fastype_of t)
in mk_eq (t ` mk_bottom T, mk_bottom U) end
(*** Product type ***)
val mk_prodT = HOLogic.mk_prodT
fun mk_tupleT [] = HOLogic.unitT
| mk_tupleT [T] = T
| mk_tupleT (T :: Ts) = mk_prodT (T, mk_tupleT Ts)
(* builds the expression (v1,v2,..,vn) *)
fun mk_tuple [] = HOLogic.unit
| mk_tuple (t::[]) = t
| mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts)
(* builds the expression (%(v1,v2,..,vn). rhs) *)
fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs
| lambda_tuple (v::[]) rhs = Term.lambda v rhs
| lambda_tuple (v::vs) rhs =
HOLogic.mk_split (Term.lambda v (lambda_tuple vs rhs))
(*** Lifted cpo type ***)
fun mk_upT T = Type(@{type_name "u"}, [T])
fun dest_upT (Type(@{type_name "u"}, [T])) = T
| dest_upT T = raise TYPE ("dest_upT", [T], [])
fun up_const T = Const(@{const_name up}, T ->> mk_upT T)
fun mk_up t = up_const (fastype_of t) ` t
fun fup_const (T, U) =
Const(@{const_name fup}, (T ->> U) ->> mk_upT T ->> U)
fun mk_fup t = fup_const (dest_cfunT (fastype_of t)) ` t
fun from_up T = fup_const (T, T) ` mk_ID T
(*** Lifted unit type ***)
val oneT = @{typ "one"}
fun one_case_const T = Const (@{const_name one_case}, T ->> oneT ->> T)
fun mk_one_case t = one_case_const (fastype_of t) ` t
(*** Strict product type ***)
fun mk_sprodT (T, U) = Type(@{type_name sprod}, [T, U])
fun dest_sprodT (Type(@{type_name sprod}, [T, U])) = (T, U)
| dest_sprodT T = raise TYPE ("dest_sprodT", [T], [])
fun spair_const (T, U) =
Const(@{const_name spair}, T ->> U ->> mk_sprodT (T, U))
(* builds the expression (:t, u:) *)
fun mk_spair (t, u) =
spair_const (fastype_of t, fastype_of u) ` t ` u
(* builds the expression (:t1,t2,..,tn:) *)
fun mk_stuple [] = @{term "ONE"}
| mk_stuple (t::[]) = t
| mk_stuple (t::ts) = mk_spair (t, mk_stuple ts)
fun sfst_const (T, U) =
Const(@{const_name sfst}, mk_sprodT (T, U) ->> T)
fun ssnd_const (T, U) =
Const(@{const_name ssnd}, mk_sprodT (T, U) ->> U)
fun ssplit_const (T, U, V) =
Const (@{const_name ssplit}, (T ->> U ->> V) ->> mk_sprodT (T, U) ->> V)
fun mk_ssplit t =
let val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of t))
in ssplit_const (T, U, V) ` t end
(*** Strict sum type ***)
fun mk_ssumT (T, U) = Type(@{type_name ssum}, [T, U])
fun dest_ssumT (Type(@{type_name ssum}, [T, U])) = (T, U)
| dest_ssumT T = raise TYPE ("dest_ssumT", [T], [])
fun sinl_const (T, U) = Const(@{const_name sinl}, T ->> mk_ssumT (T, U))
fun sinr_const (T, U) = Const(@{const_name sinr}, U ->> mk_ssumT (T, U))
(* builds the list [sinl(t1), sinl(sinr(t2)), ... sinr(...sinr(tn))] *)
fun mk_sinjects ts =
let
val Ts = map fastype_of ts
fun combine (t, T) (us, U) =
let
val v = sinl_const (T, U) ` t
val vs = map (fn u => sinr_const (T, U) ` u) us
in
(v::vs, mk_ssumT (T, U))
end
fun inj [] = raise Fail "mk_sinjects: empty list"
| inj ((t, T)::[]) = ([t], T)
| inj ((t, T)::ts) = combine (t, T) (inj ts)
in
fst (inj (ts ~~ Ts))
end
fun sscase_const (T, U, V) =
Const(@{const_name sscase},
(T ->> V) ->> (U ->> V) ->> mk_ssumT (T, U) ->> V)
fun mk_sscase (t, u) =
let val (T, _) = dest_cfunT (fastype_of t)
val (U, V) = dest_cfunT (fastype_of u)
in sscase_const (T, U, V) ` t ` u end
fun from_sinl (T, U) =
sscase_const (T, U, T) ` mk_ID T ` mk_bottom (U ->> T)
fun from_sinr (T, U) =
sscase_const (T, U, U) ` mk_bottom (T ->> U) ` mk_ID U
(*** pattern match monad type ***)
fun mk_matchT T = Type (@{type_name "match"}, [T])
fun dest_matchT (Type(@{type_name "match"}, [T])) = T
| dest_matchT T = raise TYPE ("dest_matchT", [T], [])
fun mk_fail T = Const (@{const_name "Fixrec.fail"}, mk_matchT T)
fun succeed_const T = Const (@{const_name "Fixrec.succeed"}, T ->> mk_matchT T)
fun mk_succeed t = succeed_const (fastype_of t) ` t
(*** lifted boolean type ***)
val trT = @{typ "tr"}
(*** theory of fixed points ***)
fun mk_fix t =
let val (T, _) = dest_cfunT (fastype_of t)
in mk_capply (Const(@{const_name fix}, (T ->> T) ->> T), t) end
fun iterate_const T =
Const (@{const_name iterate}, natT --> (T ->> T) ->> (T ->> T))
fun mk_iterate (n, f) =
let val (T, _) = dest_cfunT (Term.fastype_of f)
in (iterate_const T $ n) ` f ` mk_bottom T end
end