src/HOL/HOLCF/ex/Fix2.thy
author wenzelm
Mon, 10 Feb 2014 17:23:13 +0100
changeset 55381 ca31f042414f
parent 42151 4da4fc77664b
child 63549 b0d31c7def86
permissions -rw-r--r--
more explicit axiomatization;

(*  Title:      HOL/HOLCF/ex/Fix2.thy
    Author:     Franz Regensburger

Show that fix is the unique least fixed-point operator.
From axioms gix1_def,gix2_def it follows that fix = gix
*)

theory Fix2
imports HOLCF
begin

axiomatization
  gix :: "('a->'a)->'a" where
  gix1_def: "F$(gix$F) = gix$F" and
  gix2_def: "F$y=y ==> gix$F << y"


lemma lemma1: "fix = gix"
apply (rule cfun_eqI)
apply (rule below_antisym)
apply (rule fix_least)
apply (rule gix1_def)
apply (rule gix2_def)
apply (rule fix_eq [symmetric])
done

lemma lemma2: "gix$F=lub(range(%i. iterate i$F$UU))"
apply (rule lemma1 [THEN subst])
apply (rule fix_def2)
done

end