hooks for foundational terms: protection of foundational terms during simplification
(* Title: HOL/BNF_Def.thy
Author: Dmitriy Traytel, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
Copyright 2012, 2013, 2014
Definition of bounded natural functors.
*)
section \<open>Definition of Bounded Natural Functors\<close>
theory BNF_Def
imports BNF_Cardinal_Arithmetic Fun_Def_Base
keywords
"print_bnfs" :: diag and
"bnf" :: thy_goal_defn
begin
lemma Collect_case_prodD: "x \<in> Collect (case_prod A) \<Longrightarrow> A (fst x) (snd x)"
by auto
inductive
rel_sum :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd \<Rightarrow> bool" for R1 R2
where
"R1 a c \<Longrightarrow> rel_sum R1 R2 (Inl a) (Inl c)"
| "R2 b d \<Longrightarrow> rel_sum R1 R2 (Inr b) (Inr d)"
definition
rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool"
where
"rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))"
lemma rel_funI [intro]:
assumes "\<And>x y. A x y \<Longrightarrow> B (f x) (g y)"
shows "rel_fun A B f g"
using assms by (simp add: rel_fun_def)
lemma rel_funD:
assumes "rel_fun A B f g" and "A x y"
shows "B (f x) (g y)"
using assms by (simp add: rel_fun_def)
lemma rel_fun_mono:
"\<lbrakk> rel_fun X A f g; \<And>x y. Y x y \<longrightarrow> X x y; \<And>x y. A x y \<Longrightarrow> B x y \<rbrakk> \<Longrightarrow> rel_fun Y B f g"
by(simp add: rel_fun_def)
lemma rel_fun_mono' [mono]:
"\<lbrakk> \<And>x y. Y x y \<longrightarrow> X x y; \<And>x y. A x y \<longrightarrow> B x y \<rbrakk> \<Longrightarrow> rel_fun X A f g \<longrightarrow> rel_fun Y B f g"
by(simp add: rel_fun_def)
definition rel_set :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"
where "rel_set R = (\<lambda>A B. (\<forall>x\<in>A. \<exists>y\<in>B. R x y) \<and> (\<forall>y\<in>B. \<exists>x\<in>A. R x y))"
lemma rel_setI:
assumes "\<And>x. x \<in> A \<Longrightarrow> \<exists>y\<in>B. R x y"
assumes "\<And>y. y \<in> B \<Longrightarrow> \<exists>x\<in>A. R x y"
shows "rel_set R A B"
using assms unfolding rel_set_def by simp
lemma predicate2_transferD:
"\<lbrakk>rel_fun R1 (rel_fun R2 (=)) P Q; a \<in> A; b \<in> B; A \<subseteq> {(x, y). R1 x y}; B \<subseteq> {(x, y). R2 x y}\<rbrakk> \<Longrightarrow>
P (fst a) (fst b) \<longleftrightarrow> Q (snd a) (snd b)"
unfolding rel_fun_def by (blast dest!: Collect_case_prodD)
definition collect where
"collect F x = (\<Union>f \<in> F. f x)"
lemma fstI: "x = (y, z) \<Longrightarrow> fst x = y"
by simp
lemma sndI: "x = (y, z) \<Longrightarrow> snd x = z"
by simp
lemma bijI': "\<lbrakk>\<And>x y. (f x = f y) = (x = y); \<And>y. \<exists>x. y = f x\<rbrakk> \<Longrightarrow> bij f"
unfolding bij_def inj_on_def by auto blast
(* Operator: *)
definition "Gr A f = {(a, f a) | a. a \<in> A}"
definition "Grp A f = (\<lambda>a b. b = f a \<and> a \<in> A)"
definition vimage2p where
"vimage2p f g R = (\<lambda>x y. R (f x) (g y))"
lemma collect_comp: "collect F \<circ> g = collect ((\<lambda>f. f \<circ> g) ` F)"
by (rule ext) (simp add: collect_def)
definition convol ("\<langle>(_,/ _)\<rangle>") where
"\<langle>f, g\<rangle> \<equiv> \<lambda>a. (f a, g a)"
lemma fst_convol: "fst \<circ> \<langle>f, g\<rangle> = f"
apply(rule ext)
unfolding convol_def by simp
lemma snd_convol: "snd \<circ> \<langle>f, g\<rangle> = g"
apply(rule ext)
unfolding convol_def by simp
lemma convol_mem_GrpI:
"x \<in> A \<Longrightarrow> \<langle>id, g\<rangle> x \<in> (Collect (case_prod (Grp A g)))"
unfolding convol_def Grp_def by auto
definition csquare where
"csquare A f1 f2 p1 p2 \<longleftrightarrow> (\<forall> a \<in> A. f1 (p1 a) = f2 (p2 a))"
lemma eq_alt: "(=) = Grp UNIV id"
unfolding Grp_def by auto
lemma leq_conversepI: "R = (=) \<Longrightarrow> R \<le> R\<inverse>\<inverse>"
by auto
lemma leq_OOI: "R = (=) \<Longrightarrow> R \<le> R OO R"
by auto
lemma OO_Grp_alt: "(Grp A f)\<inverse>\<inverse> OO Grp A g = (\<lambda>x y. \<exists>z. z \<in> A \<and> f z = x \<and> g z = y)"
unfolding Grp_def by auto
lemma Grp_UNIV_id: "f = id \<Longrightarrow> (Grp UNIV f)\<inverse>\<inverse> OO Grp UNIV f = Grp UNIV f"
unfolding Grp_def by auto
lemma Grp_UNIV_idI: "x = y \<Longrightarrow> Grp UNIV id x y"
unfolding Grp_def by auto
lemma Grp_mono: "A \<le> B \<Longrightarrow> Grp A f \<le> Grp B f"
unfolding Grp_def by auto
lemma GrpI: "\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> Grp A f x y"
unfolding Grp_def by auto
lemma GrpE: "Grp A f x y \<Longrightarrow> (\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
unfolding Grp_def by auto
lemma Collect_case_prod_Grp_eqD: "z \<in> Collect (case_prod (Grp A f)) \<Longrightarrow> (f \<circ> fst) z = snd z"
unfolding Grp_def comp_def by auto
lemma Collect_case_prod_Grp_in: "z \<in> Collect (case_prod (Grp A f)) \<Longrightarrow> fst z \<in> A"
unfolding Grp_def comp_def by auto
definition "pick_middlep P Q a c = (SOME b. P a b \<and> Q b c)"
lemma pick_middlep:
"(P OO Q) a c \<Longrightarrow> P a (pick_middlep P Q a c) \<and> Q (pick_middlep P Q a c) c"
unfolding pick_middlep_def apply(rule someI_ex) by auto
definition fstOp where
"fstOp P Q ac = (fst ac, pick_middlep P Q (fst ac) (snd ac))"
definition sndOp where
"sndOp P Q ac = (pick_middlep P Q (fst ac) (snd ac), (snd ac))"
lemma fstOp_in: "ac \<in> Collect (case_prod (P OO Q)) \<Longrightarrow> fstOp P Q ac \<in> Collect (case_prod P)"
unfolding fstOp_def mem_Collect_eq
by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct1])
lemma fst_fstOp: "fst bc = (fst \<circ> fstOp P Q) bc"
unfolding comp_def fstOp_def by simp
lemma snd_sndOp: "snd bc = (snd \<circ> sndOp P Q) bc"
unfolding comp_def sndOp_def by simp
lemma sndOp_in: "ac \<in> Collect (case_prod (P OO Q)) \<Longrightarrow> sndOp P Q ac \<in> Collect (case_prod Q)"
unfolding sndOp_def mem_Collect_eq
by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct2])
lemma csquare_fstOp_sndOp:
"csquare (Collect (f (P OO Q))) snd fst (fstOp P Q) (sndOp P Q)"
unfolding csquare_def fstOp_def sndOp_def using pick_middlep by simp
lemma snd_fst_flip: "snd xy = (fst \<circ> (%(x, y). (y, x))) xy"
by (simp split: prod.split)
lemma fst_snd_flip: "fst xy = (snd \<circ> (%(x, y). (y, x))) xy"
by (simp split: prod.split)
lemma flip_pred: "A \<subseteq> Collect (case_prod (R \<inverse>\<inverse>)) \<Longrightarrow> (%(x, y). (y, x)) ` A \<subseteq> Collect (case_prod R)"
by auto
lemma predicate2_eqD: "A = B \<Longrightarrow> A a b \<longleftrightarrow> B a b"
by simp
lemma case_sum_o_inj: "case_sum f g \<circ> Inl = f" "case_sum f g \<circ> Inr = g"
by auto
lemma map_sum_o_inj: "map_sum f g \<circ> Inl = Inl \<circ> f" "map_sum f g \<circ> Inr = Inr \<circ> g"
by auto
lemma card_order_csum_cone_cexp_def:
"card_order r \<Longrightarrow> ( |A1| +c cone) ^c r = |Func UNIV (Inl ` A1 \<union> {Inr ()})|"
unfolding cexp_def cone_def Field_csum Field_card_of by (auto dest: Field_card_order)
lemma If_the_inv_into_in_Func:
"\<lbrakk>inj_on g C; C \<subseteq> B \<union> {x}\<rbrakk> \<Longrightarrow>
(\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<in> Func UNIV (B \<union> {x})"
unfolding Func_def by (auto dest: the_inv_into_into)
lemma If_the_inv_into_f_f:
"\<lbrakk>i \<in> C; inj_on g C\<rbrakk> \<Longrightarrow> ((\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<circ> g) i = id i"
unfolding Func_def by (auto elim: the_inv_into_f_f)
lemma the_inv_f_o_f_id: "inj f \<Longrightarrow> (the_inv f \<circ> f) z = id z"
by (simp add: the_inv_f_f)
lemma vimage2pI: "R (f x) (g y) \<Longrightarrow> vimage2p f g R x y"
unfolding vimage2p_def .
lemma rel_fun_iff_leq_vimage2p: "(rel_fun R S) f g = (R \<le> vimage2p f g S)"
unfolding rel_fun_def vimage2p_def by auto
lemma convol_image_vimage2p: "\<langle>f \<circ> fst, g \<circ> snd\<rangle> ` Collect (case_prod (vimage2p f g R)) \<subseteq> Collect (case_prod R)"
unfolding vimage2p_def convol_def by auto
lemma vimage2p_Grp: "vimage2p f g P = Grp UNIV f OO P OO (Grp UNIV g)\<inverse>\<inverse>"
unfolding vimage2p_def Grp_def by auto
lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)"
by simp
lemma comp_apply_eq: "f (g x) = h (k x) \<Longrightarrow> (f \<circ> g) x = (h \<circ> k) x"
unfolding comp_apply by assumption
lemma refl_ge_eq: "(\<And>x. R x x) \<Longrightarrow> (=) \<le> R"
by auto
lemma ge_eq_refl: "(=) \<le> R \<Longrightarrow> R x x"
by auto
lemma reflp_eq: "reflp R = ((=) \<le> R)"
by (auto simp: reflp_def fun_eq_iff)
lemma transp_relcompp: "transp r \<longleftrightarrow> r OO r \<le> r"
by (auto simp: transp_def)
lemma symp_conversep: "symp R = (R\<inverse>\<inverse> \<le> R)"
by (auto simp: symp_def fun_eq_iff)
lemma diag_imp_eq_le: "(\<And>x. x \<in> A \<Longrightarrow> R x x) \<Longrightarrow> \<forall>x y. x \<in> A \<longrightarrow> y \<in> A \<longrightarrow> x = y \<longrightarrow> R x y"
by blast
definition eq_onp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
where "eq_onp R = (\<lambda>x y. R x \<and> x = y)"
lemma eq_onp_Grp: "eq_onp P = BNF_Def.Grp (Collect P) id"
unfolding eq_onp_def Grp_def by auto
lemma eq_onp_to_eq: "eq_onp P x y \<Longrightarrow> x = y"
by (simp add: eq_onp_def)
lemma eq_onp_top_eq_eq: "eq_onp top = (=)"
by (simp add: eq_onp_def)
lemma eq_onp_same_args: "eq_onp P x x = P x"
by (auto simp add: eq_onp_def)
lemma eq_onp_eqD: "eq_onp P = Q \<Longrightarrow> P x = Q x x"
unfolding eq_onp_def by blast
lemma Ball_Collect: "Ball A P = (A \<subseteq> (Collect P))"
by auto
lemma eq_onp_mono0: "\<forall>x\<in>A. P x \<longrightarrow> Q x \<Longrightarrow> \<forall>x\<in>A. \<forall>y\<in>A. eq_onp P x y \<longrightarrow> eq_onp Q x y"
unfolding eq_onp_def by auto
lemma eq_onp_True: "eq_onp (\<lambda>_. True) = (=)"
unfolding eq_onp_def by simp
lemma Ball_image_comp: "Ball (f ` A) g = Ball A (g \<circ> f)"
by auto
lemma rel_fun_Collect_case_prodD:
"rel_fun A B f g \<Longrightarrow> X \<subseteq> Collect (case_prod A) \<Longrightarrow> x \<in> X \<Longrightarrow> B ((f \<circ> fst) x) ((g \<circ> snd) x)"
unfolding rel_fun_def by auto
lemma eq_onp_mono_iff: "eq_onp P \<le> eq_onp Q \<longleftrightarrow> P \<le> Q"
unfolding eq_onp_def by auto
ML_file \<open>Tools/BNF/bnf_util.ML\<close>
ML_file \<open>Tools/BNF/bnf_tactics.ML\<close>
ML_file \<open>Tools/BNF/bnf_def_tactics.ML\<close>
ML_file \<open>Tools/BNF/bnf_def.ML\<close>
end