hooks for foundational terms: protection of foundational terms during simplification
(* Title: HOL/Library/LaTeXsugar.thy
Author: Gerwin Klein, Tobias Nipkow, Norbert Schirmer
Copyright 2005 NICTA and TUM
*)
(*<*)
theory LaTeXsugar
imports Main
begin
(* LOGIC *)
notation (latex output)
If ("(\<^latex>\<open>\\textsf{\<close>if\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textsf{\<close>then\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textsf{\<close>else\<^latex>\<open>}\<close> (_))" 10)
syntax (latex output)
"_Let" :: "[letbinds, 'a] => 'a"
("(\<^latex>\<open>\\textsf{\<close>let\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textsf{\<close>in\<^latex>\<open>}\<close> (_))" 10)
"_case_syntax":: "['a, cases_syn] => 'b"
("(\<^latex>\<open>\\textsf{\<close>case\<^latex>\<open>}\<close> _ \<^latex>\<open>\\textsf{\<close>of\<^latex>\<open>}\<close>/ _)" 10)
(* SETS *)
(* empty set *)
notation (latex)
"Set.empty" ("\<emptyset>")
(* insert *)
translations
"{x} \<union> A" <= "CONST insert x A"
"{x,y}" <= "{x} \<union> {y}"
"{x,y} \<union> A" <= "{x} \<union> ({y} \<union> A)"
"{x}" <= "{x} \<union> \<emptyset>"
(* set comprehension *)
syntax (latex output)
"_Collect" :: "pttrn => bool => 'a set" ("(1{_ | _})")
"_CollectIn" :: "pttrn => 'a set => bool => 'a set" ("(1{_ \<in> _ | _})")
translations
"_Collect p P" <= "{p. P}"
"_Collect p P" <= "{p|xs. P}"
"_CollectIn p A P" <= "{p : A. P}"
(* card *)
notation (latex output)
card ("|_|")
(* LISTS *)
(* Cons *)
notation (latex)
Cons ("_ \<cdot>/ _" [66,65] 65)
(* length *)
notation (latex output)
length ("|_|")
(* nth *)
notation (latex output)
nth ("_\<^latex>\<open>\\ensuremath{_{[\\mathit{\<close>_\<^latex>\<open>}]}}\<close>" [1000,0] 1000)
(* DUMMY *)
consts DUMMY :: 'a ("\<^latex>\<open>\\_\<close>")
(* THEOREMS *)
notation (Rule output)
Pure.imp ("\<^latex>\<open>\\mbox{}\\inferrule{\\mbox{\<close>_\<^latex>\<open>}}\<close>\<^latex>\<open>{\\mbox{\<close>_\<^latex>\<open>}}\<close>")
syntax (Rule output)
"_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
("\<^latex>\<open>\\mbox{}\\inferrule{\<close>_\<^latex>\<open>}\<close>\<^latex>\<open>{\\mbox{\<close>_\<^latex>\<open>}}\<close>")
"_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms"
("\<^latex>\<open>\\mbox{\<close>_\<^latex>\<open>}\\\\\<close>/ _")
"_asm" :: "prop \<Rightarrow> asms" ("\<^latex>\<open>\\mbox{\<close>_\<^latex>\<open>}\<close>")
notation (Axiom output)
"Trueprop" ("\<^latex>\<open>\\mbox{}\\inferrule{\\mbox{}}{\\mbox{\<close>_\<^latex>\<open>}}\<close>")
notation (IfThen output)
Pure.imp ("\<^latex>\<open>{\\normalsize{}\<close>If\<^latex>\<open>\\,}\<close> _/ \<^latex>\<open>{\\normalsize \\,\<close>then\<^latex>\<open>\\,}\<close>/ _.")
syntax (IfThen output)
"_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
("\<^latex>\<open>{\\normalsize{}\<close>If\<^latex>\<open>\\,}\<close> _ /\<^latex>\<open>{\\normalsize \\,\<close>then\<^latex>\<open>\\,}\<close>/ _.")
"_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms" ("\<^latex>\<open>\\mbox{\<close>_\<^latex>\<open>}\<close> /\<^latex>\<open>{\\normalsize \\,\<close>and\<^latex>\<open>\\,}\<close>/ _")
"_asm" :: "prop \<Rightarrow> asms" ("\<^latex>\<open>\\mbox{\<close>_\<^latex>\<open>}\<close>")
notation (IfThenNoBox output)
Pure.imp ("\<^latex>\<open>{\\normalsize{}\<close>If\<^latex>\<open>\\,}\<close> _/ \<^latex>\<open>{\\normalsize \\,\<close>then\<^latex>\<open>\\,}\<close>/ _.")
syntax (IfThenNoBox output)
"_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
("\<^latex>\<open>{\\normalsize{}\<close>If\<^latex>\<open>\\,}\<close> _ /\<^latex>\<open>{\\normalsize \\,\<close>then\<^latex>\<open>\\,}\<close>/ _.")
"_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms" ("_ /\<^latex>\<open>{\\normalsize \\,\<close>and\<^latex>\<open>\\,}\<close>/ _")
"_asm" :: "prop \<Rightarrow> asms" ("_")
setup \<open>
Thy_Output.antiquotation_pretty_source_embedded \<^binding>\<open>const_typ\<close>
(Scan.lift Args.embedded_inner_syntax)
(fn ctxt => fn c =>
let val tc = Proof_Context.read_const {proper = false, strict = false} ctxt c in
Pretty.block [Thy_Output.pretty_term ctxt tc, Pretty.str " ::",
Pretty.brk 1, Syntax.pretty_typ ctxt (fastype_of tc)]
end)
\<close>
setup\<open>
let
fun dummy_pats (wrap $ (eq $ lhs $ rhs)) =
let
val rhs_vars = Term.add_vars rhs [];
fun dummy (v as Var (ixn as (_, T))) =
if member ((=) ) rhs_vars ixn then v else Const (\<^const_name>\<open>DUMMY\<close>, T)
| dummy (t $ u) = dummy t $ dummy u
| dummy (Abs (n, T, b)) = Abs (n, T, dummy b)
| dummy t = t;
in wrap $ (eq $ dummy lhs $ rhs) end
in
Term_Style.setup \<^binding>\<open>dummy_pats\<close> (Scan.succeed (K dummy_pats))
end
\<close>
setup \<open>
let
fun eta_expand Ts t xs = case t of
Abs(x,T,t) =>
let val (t', xs') = eta_expand (T::Ts) t xs
in (Abs (x, T, t'), xs') end
| _ =>
let
val (a,ts) = strip_comb t (* assume a atomic *)
val (ts',xs') = fold_map (eta_expand Ts) ts xs
val t' = list_comb (a, ts');
val Bs = binder_types (fastype_of1 (Ts,t));
val n = Int.min (length Bs, length xs');
val bs = map Bound ((n - 1) downto 0);
val xBs = ListPair.zip (xs',Bs);
val xs'' = drop n xs';
val t'' = fold_rev Term.abs xBs (list_comb(t', bs))
in (t'', xs'') end
val style_eta_expand =
(Scan.repeat Args.name) >> (fn xs => fn ctxt => fn t => fst (eta_expand [] t xs))
in Term_Style.setup \<^binding>\<open>eta_expand\<close> style_eta_expand end
\<close>
end
(*>*)