doc-src/TutorialI/Inductive/document/Even.tex
author paulson
Fri, 12 Jan 2001 16:16:09 +0100
changeset 10882 ca41ba5fb8e2
parent 10878 b254d5ad6dd4
child 11708 d27253c4594f
permissions -rw-r--r--
updated for new version of advanced-examples.tex

%
\begin{isabellebody}%
\def\isabellecontext{Even}%
\isanewline
\isacommand{theory}\ Even\ {\isacharequal}\ Main{\isacharcolon}\isanewline
\isanewline
\isanewline
\isacommand{consts}\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline
\isacommand{inductive}\ even\isanewline
\isakeyword{intros}\isanewline
zero{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequote}\isanewline
step{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isachardoublequote}%
\begin{isamarkuptext}%
An inductive definition consists of introduction rules. 

\begin{isabelle}%
\ \ \ \ \ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even%
\end{isabelle}
\rulename{even.step}

\begin{isabelle}%
\ \ \ \ \ {\isasymlbrakk}xa\ {\isasymin}\ even{\isacharsemicolon}\ P\ {\isadigit{0}}{\isacharsemicolon}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ P\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ xa%
\end{isabelle}
\rulename{even.induct}

Attributes can be given to the introduction rules.  Here both rules are
specified as \isa{intro!}

Our first lemma states that numbers of the form $2\times k$ are even.%
\end{isamarkuptext}%
\isacommand{lemma}\ two{\isacharunderscore}times{\isacharunderscore}even{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharhash}{\isadigit{2}}{\isacharasterisk}k\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isacommand{apply}\ {\isacharparenleft}induct\ {\isachardoublequote}k{\isachardoublequote}{\isacharparenright}%
\begin{isamarkuptxt}%
The first step is induction on the natural number \isa{k}, which leaves
two subgoals:
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isacharhash}{\isadigit{2}}\ {\isacharasterisk}\ {\isadigit{0}}\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isacharhash}{\isadigit{2}}\ {\isacharasterisk}\ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isacharhash}{\isadigit{2}}\ {\isacharasterisk}\ Suc\ n\ {\isasymin}\ even%
\end{isabelle}
Here \isa{auto} simplifies both subgoals so that they match the introduction
rules, which then are applied automatically.%
\end{isamarkuptxt}%
\ \isacommand{apply}\ auto\isanewline
\isacommand{done}%
\begin{isamarkuptext}%
Our goal is to prove the equivalence between the traditional definition
of even (using the divides relation) and our inductive definition.  Half of
this equivalence is trivial using the lemma just proved, whose \isa{intro!}
attribute ensures it will be applied automatically.%
\end{isamarkuptext}%
\isacommand{lemma}\ dvd{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}{\isacharhash}{\isadigit{2}}\ dvd\ n\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isacommand{by}\ {\isacharparenleft}auto\ simp\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}%
\begin{isamarkuptext}%
our first rule induction!%
\end{isamarkuptext}%
\isacommand{lemma}\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isacharhash}{\isadigit{2}}\ dvd\ n{\isachardoublequote}\isanewline
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isacharhash}{\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isacharhash}{\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharhash}{\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}%
\end{isabelle}%
\end{isamarkuptxt}%
\isacommand{apply}\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isasymexists}k{\isachardot}\ n\ {\isacharequal}\ {\isacharhash}{\isadigit{2}}\ {\isacharasterisk}\ k{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isasymexists}k{\isachardot}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharequal}\ {\isacharhash}{\isadigit{2}}\ {\isacharasterisk}\ k%
\end{isabelle}%
\end{isamarkuptxt}%
\isacommand{apply}\ clarify%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ k{\isachardot}\ {\isacharhash}{\isadigit{2}}\ {\isacharasterisk}\ k\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isasymexists}ka{\isachardot}\ Suc\ {\isacharparenleft}Suc\ {\isacharparenleft}{\isacharhash}{\isadigit{2}}\ {\isacharasterisk}\ k{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharhash}{\isadigit{2}}\ {\isacharasterisk}\ ka%
\end{isabelle}%
\end{isamarkuptxt}%
\isacommand{apply}\ {\isacharparenleft}rule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequote}Suc\ k{\isachardoublequote}\ \isakeyword{in}\ exI{\isacharcomma}\ simp{\isacharparenright}\isanewline
\isacommand{done}%
\begin{isamarkuptext}%
no iff-attribute because we don't always want to use it%
\end{isamarkuptext}%
\isacommand{theorem}\ even{\isacharunderscore}iff{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isacharhash}{\isadigit{2}}\ dvd\ n{\isacharparenright}{\isachardoublequote}\isanewline
\isacommand{by}\ {\isacharparenleft}blast\ intro{\isacharcolon}\ dvd{\isacharunderscore}imp{\isacharunderscore}even\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharparenright}%
\begin{isamarkuptext}%
this result ISN'T inductive...%
\end{isamarkuptext}%
\isacommand{lemma}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ n\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}na{\isachardot}\ {\isasymlbrakk}na\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even%
\end{isabelle}%
\end{isamarkuptxt}%
\isacommand{oops}%
\begin{isamarkuptext}%
...so we need an inductive lemma...%
\end{isamarkuptext}%
\isacommand{lemma}\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n{\isacharminus}{\isacharhash}{\isadigit{2}}\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isadigit{0}}\ {\isacharminus}\ {\isacharhash}{\isadigit{2}}\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isacharminus}\ {\isacharhash}{\isadigit{2}}\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharminus}\ {\isacharhash}{\isadigit{2}}\ {\isasymin}\ even%
\end{isabelle}%
\end{isamarkuptxt}%
\isacommand{apply}\ auto\isanewline
\isacommand{done}%
\begin{isamarkuptext}%
...and prove it in a separate step%
\end{isamarkuptext}%
\isacommand{lemma}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isacommand{by}\ {\isacharparenleft}drule\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcomma}\ simp{\isacharparenright}\isanewline
\isanewline
\isanewline
\isacommand{lemma}\ {\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}{\isachardoublequote}\isanewline
\isacommand{by}\ {\isacharparenleft}blast\ dest{\isacharcolon}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharparenright}\isanewline
\isanewline
\isacommand{end}\isanewline
\isanewline
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: