(* Title: HOLCF/Tr.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for Tr.thy
*)
open Tr;
(* ------------------------------------------------------------------------ *)
(* Exhaustion and Elimination for type one *)
(* ------------------------------------------------------------------------ *)
qed_goalw "Exh_tr" thy [FF_def,TT_def] "t=UU | t = TT | t = FF"
(fn prems =>
[
(lift.induct_tac "t" 1),
(fast_tac HOL_cs 1),
(fast_tac (HOL_cs addss !simpset) 1)
]);
qed_goal "trE" thy
"[| p=UU ==> Q; p = TT ==>Q; p = FF ==>Q|] ==>Q"
(fn prems =>
[
(rtac (Exh_tr RS disjE) 1),
(eresolve_tac prems 1),
(etac disjE 1),
(eresolve_tac prems 1),
(eresolve_tac prems 1)
]);
(* ------------------------------------------------------------------------ *)
(* tactic for tr-thms with case split *)
(* ------------------------------------------------------------------------ *)
val tr_defs = [andalso_def,orelse_def,neg_def,ifte_def,TT_def,FF_def];
fun prover t = prove_goal thy t
(fn prems =>
[
(res_inst_tac [("p","y")] trE 1),
(REPEAT(asm_simp_tac (!simpset addsimps
[o_def,flift1_def,flift2_def,inst_lift_po]@tr_defs) 1))
]);
(* ------------------------------------------------------------------------ *)
(* distinctness for type tr *)
(* ------------------------------------------------------------------------ *)
val dist_less_tr = map prover [
"~TT << UU",
"~FF << UU",
"~TT << FF",
"~FF << TT"
];
val dist_eq_tr = map prover ["TT~=UU","FF~=UU","TT~=FF"];
val dist_eq_tr = dist_eq_tr @ (map (fn thm => (thm RS not_sym)) dist_eq_tr);
(* ------------------------------------------------------------------------ *)
(* lemmas about andalso, orelse, neg and if *)
(* ------------------------------------------------------------------------ *)
val andalso_thms = map prover [
"(TT andalso y) = y",
"(FF andalso y) = FF",
"(UU andalso y) = UU",
"(y andalso TT) = y",
"(y andalso y) = y"
];
val orelse_thms = map prover [
"(TT orelse y) = TT",
"(FF orelse y) = y",
"(UU orelse y) = UU",
"(y orelse FF) = y",
"(y orelse y) = y"];
val neg_thms = map prover [
"neg`TT = FF",
"neg`FF = TT",
"neg`UU = UU"
];
val ifte_thms = map prover [
"If UU then e1 else e2 fi = UU",
"If FF then e1 else e2 fi = e2",
"If TT then e1 else e2 fi = e1"];
Addsimps (dist_less_tr @ dist_eq_tr @ andalso_thms @
orelse_thms @ neg_thms @ ifte_thms);
(* --------------------------------------------------------- *)
(* Theroems for the liftings *)
(* --------------------------------------------------------- *)
(* --------------------------------------------------------- *)
(* Admissibility tactic and tricks *)
(* --------------------------------------------------------- *)
goal thy "x~=FF = (x=TT|x=UU)";
by (res_inst_tac [("p","x")] trE 1);
by (TRYALL (Asm_full_simp_tac));
qed"adm_trick_1";
goal thy "x~=TT = (x=FF|x=UU)";
by (res_inst_tac [("p","x")] trE 1);
by (TRYALL (Asm_full_simp_tac));
qed"adm_trick_2";
val adm_tricks = [adm_trick_1,adm_trick_2];
(*val adm_tac = (fn i => ((resolve_tac adm_lemmas i)));*)
(*val adm_tacR = (fn i => (REPEAT (adm_tac i)));*)
(*val adm_cont_tac = (fn i => ((adm_tacR i) THEN (cont_tacR i)));*)
(* ----------------------------------------------------------------- *)
(* Relations between domains and terms using lift constructs *)
(* ----------------------------------------------------------------- *)
goal thy "!!t.[|t~=UU|]==> ((t andalso s)~=FF)=(t~=FF & s~=FF)";
by (rtac iffI 1);
(* 1 *)
by (res_inst_tac [("p","t")] trE 1);
by (fast_tac HOL_cs 1);
by (res_inst_tac [("p","s")] trE 1);
by (Asm_full_simp_tac 1);
by (Asm_full_simp_tac 1);
by (subgoal_tac "(t andalso s) = FF" 1);
by (fast_tac HOL_cs 1);
by (Asm_full_simp_tac 1);
by (res_inst_tac [("p","s")] trE 1);
by (subgoal_tac "(t andalso s) = FF" 1);
by (fast_tac HOL_cs 1);
by (Asm_full_simp_tac 1);
by (subgoal_tac "(t andalso s) = FF" 1);
by (fast_tac HOL_cs 1);
by (Asm_full_simp_tac 1);
by (subgoal_tac "(t andalso s) = FF" 1);
by (fast_tac HOL_cs 1);
by (Asm_full_simp_tac 1);
(* 2*)
by (res_inst_tac [("p","t")] trE 1);
by (fast_tac HOL_cs 1);
by (Asm_full_simp_tac 1);
by (fast_tac HOL_cs 1);
qed"andalso_and";
goal thy "Def x ~=UU";
by (Simp_tac 1);
qed"blift_not_UU";
goal thy "(Def x ~=FF)= x";
by (simp_tac (!simpset addsimps [FF_def]) 1);
qed"blift_and_bool";
goal thy "(Def x = TT) = x";
by (simp_tac (!simpset addsimps [TT_def]) 1);
qed"blift_and_bool2";
goal thy "(Def x = FF) = (~x)";
by (simp_tac (!simpset addsimps [FF_def]) 1);
by (fast_tac HOL_cs 1);
qed"blift_and_bool3";
goal thy "plift P`(Def y) = Def (P y)";
by (simp_tac (!simpset addsimps [plift_def,flift1_def]) 1);
qed"plift2blift";
goal thy
"(If Def P then A else B fi)= (if P then A else B)";
by (res_inst_tac [("p","Def P")] trE 1);
by (Asm_full_simp_tac 1);
by (asm_full_simp_tac (!simpset addsimps tr_defs@[flift1_def,o_def]) 1);
by (asm_full_simp_tac (!simpset addsimps tr_defs@[flift1_def,o_def]) 1);
qed"If_and_if";
Addsimps [plift2blift,If_and_if,blift_not_UU,
blift_and_bool,blift_and_bool2,blift_and_bool3];