(* Title: HOLCF/lift1.thy
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lifting
*)
Lift1 = Cfun3 +
(* new type for lifting *)
types "u" 1
arities "u" :: (pcpo)term
consts
Rep_Lift :: "('a)u => (void + 'a)"
Abs_Lift :: "(void + 'a) => ('a)u"
Iup :: "'a => ('a)u"
UU_lift :: "('a)u"
Ilift :: "('a->'b)=>('a)u => 'b"
less_lift :: "('a)u => ('a)u => bool"
rules
(*faking a type definition... *)
(* ('a)u is isomorphic to void + 'a *)
Rep_Lift_inverse "Abs_Lift(Rep_Lift(p)) = p"
Abs_Lift_inverse "Rep_Lift(Abs_Lift(p)) = p"
(*defining the abstract constants*)
UU_lift_def "UU_lift == Abs_Lift(Inl(UU))"
Iup_def "Iup(x) == Abs_Lift(Inr(x))"
Ilift_def "Ilift(f)(x)==\
\ sum_case (Rep_Lift(x)) (%y.UU) (%z.f[z])"
less_lift_def "less_lift(x1)(x2) == \
\ (sum_case (Rep_Lift(x1))\
\ (% y1.True)\
\ (% y2.sum_case (Rep_Lift(x2))\
\ (% z1.False)\
\ (% z2.y2<<z2)))"
end