Removed ~10000 hack in function idx that can lead to inconsistencies
when unifying terms with a large number of abstractions.
%
\begin{isabellebody}%
\def\isabellecontext{a{\isadigit{2}}}%
\isamarkupfalse%
%
\isamarkupsubsection{Sorting \label{psv2002a2}%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
For simplicity we sort natural numbers.%
\end{isamarkuptext}%
\isamarkuptrue%
%
\isamarkupsubsubsection{Sorting with lists%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
The task is to define insertion sort and prove its correctness.
The following functions are required:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{consts}\ \isanewline
\ \ insort\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymRightarrow}\ nat\ list\ {\isasymRightarrow}\ nat\ list{\isachardoublequote}\isanewline
\ \ sort\ \ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ list\ {\isasymRightarrow}\ nat\ list{\isachardoublequote}\isanewline
\ \ le\ \ \ \ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymRightarrow}\ nat\ list\ {\isasymRightarrow}\ bool{\isachardoublequote}\isanewline
\ \ sorted\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ list\ {\isasymRightarrow}\ bool{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
In your definition, \isa{insort\ x\ xs} should insert a
number \isa{x} into an already sorted list \isa{xs}, and \isa{sort\ ys} should build on \isa{insort} to produce the sorted
version of \isa{ys}.
To show that the resulting list is indeed sorted we need a predicate
\isa{sorted} that checks if each element in the list is less or equal
to the following ones; \isa{le\ n\ xs} should be true iff
\isa{n} is less or equal to all elements of \isa{xs}.
Start out by showing a monotonicity property of \isa{le}.
For technical reasons the lemma should be phrased as follows:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}x\ {\isasymle}\ y\ {\isasymLongrightarrow}\ le\ y\ xs\ {\isasymlongrightarrow}\ le\ x\ xs{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Now show the following correctness theorem:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ {\isachardoublequote}sorted\ {\isacharparenleft}sort\ xs{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
This theorem alone is too weak. It does not guarantee that the
sorted list contains the same elements as the input. In the worst
case, \isa{sort} might always return \isa{{\isacharbrackleft}{\isacharbrackright}} --- surely an
undesirable implementation of sorting.
Define a function \isa{count\ xs\ x} that counts how often \isa{x}
occurs in \isa{xs}. Show that%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ {\isachardoublequote}count\ {\isacharparenleft}sort\ xs{\isacharparenright}\ x\ {\isacharequal}\ count\ xs\ x{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\isamarkupsubsubsection{Sorting with trees%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
Our second sorting algorithm uses trees. Thus you should first
define a data type \isa{bintree} of binary trees that are either
empty or consist of a node carrying a natural number and two subtrees.
Define a function \isa{tsorted} that checks if a binary tree is
sorted. It is convenien to employ two auxiliary functions \isa{tge}/\isa{tle} that test whether a number is
greater-or-equal/less-or-equal to all elements of a tree.
Finally define a function \isa{tree{\isacharunderscore}of} that turns a list into a
sorted tree. It is helpful to base \isa{tree{\isacharunderscore}of} on a function
\isa{ins\ n\ b} that inserts a number \isa{n} into a sorted tree
\isa{b}.
Show%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}tsorted\ {\isacharparenleft}tree{\isacharunderscore}of\ xs{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Again we have to show that no elements are lost (or added).
As for lists, define a function \isa{tcount\ x\ b} that counts the
number of occurrences of the number \isa{x} in the tree \isa{b}.
Show%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ {\isachardoublequote}tcount\ {\isacharparenleft}tree{\isacharunderscore}of\ xs{\isacharparenright}\ x\ {\isacharequal}\ count\ xs\ x{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Now we are ready to sort lists. We know how to produce an
ordered tree from a list. Thus we merely need a function \isa{list{\isacharunderscore}of} that turns an (ordered) tree into an (ordered) list.
Define this function and prove%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ {\isachardoublequote}sorted\ {\isacharparenleft}list{\isacharunderscore}of\ {\isacharparenleft}tree{\isacharunderscore}of\ xs{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{theorem}\ {\isachardoublequote}count\ {\isacharparenleft}list{\isacharunderscore}of\ {\isacharparenleft}tree{\isacharunderscore}of\ xs{\isacharparenright}{\isacharparenright}\ n\ {\isacharequal}\ count\ xs\ n{\isachardoublequote}\ \ \ \ \isanewline
\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Hints:
\begin{itemize}
\item
Try to formulate all your lemmas as equations rather than implications
because that often simplifies their proof.
Make sure that the right-hand side is (in some sense)
simpler than the left-hand side.
\item
Eventually you need to relate \isa{sorted} and \isa{tsorted}.
This is facilitated by a function \isa{ge} on lists (analogously to
\isa{tge} on trees) and the following lemma (that you will need to prove):
\begin{isabelle}%
sorted\ {\isacharparenleft}a\ {\isacharat}\ x\ {\isacharhash}\ b{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}sorted\ a\ {\isasymand}\ sorted\ b\ {\isasymand}\ ge\ x\ a\ {\isasymand}\ le\ x\ b{\isacharparenright}%
\end{isabelle}
\end{itemize}%
\end{isamarkuptext}%
\isamarkuptrue%
\isamarkupfalse%
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: