(* Title: HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML
Author: Lawrence C Paulson and Claire Quigley, Cambridge University Computer Laboratory
Transfer of proofs from external provers.
*)
signature SLEDGEHAMMER_PROOF_RECONSTRUCT =
sig
val chained_hint: string
val invert_const: string -> string
val invert_type_const: string -> string
val num_typargs: theory -> string -> int
val make_tvar: string -> typ
val strip_prefix: string -> string -> string option
val setup: theory -> theory
val is_proof_well_formed: string -> bool
val metis_lemma_list: bool -> string ->
string * string vector * (int * int) * Proof.context * thm * int -> string * string list
val structured_isar_proof: string ->
string * string vector * (int * int) * Proof.context * thm * int -> string * string list
end;
structure Sledgehammer_Proof_Reconstruct : SLEDGEHAMMER_PROOF_RECONSTRUCT =
struct
open Sledgehammer_FOL_Clause
open Sledgehammer_Fact_Preprocessor
val trace_proof_path = Path.basic "atp_trace";
fun trace_proof_msg f =
if !trace then File.append (File.tmp_path trace_proof_path) (f ()) else ();
fun string_of_thm ctxt = PrintMode.setmp [] (Display.string_of_thm ctxt);
(*For generating structured proofs: keep every nth proof line*)
val (modulus, modulus_setup) = Attrib.config_int "sledgehammer_modulus" 1;
(*Indicates whether to include sort information in generated proofs*)
val (recon_sorts, recon_sorts_setup) = Attrib.config_bool "sledgehammer_sorts" true;
val setup = modulus_setup #> recon_sorts_setup;
(**** PARSING OF TSTP FORMAT ****)
(*Syntax trees, either termlist or formulae*)
datatype stree = Int of int | Br of string * stree list;
fun atom x = Br(x,[]);
fun scons (x,y) = Br("cons", [x,y]);
val listof = List.foldl scons (atom "nil");
(*Strings enclosed in single quotes, e.g. filenames*)
val quoted = $$"'" |-- Scan.repeat (~$$"'") --| $$"'" >> implode;
(*Intended for $true and $false*)
fun tf s = "c_" ^ str (Char.toUpper (String.sub(s,0))) ^ String.extract(s,1,NONE);
val truefalse = $$"$" |-- Symbol.scan_id >> (atom o tf);
(*Integer constants, typically proof line numbers*)
fun is_digit s = Char.isDigit (String.sub(s,0));
val integer = Scan.many1 is_digit >> (the o Int.fromString o implode);
(*Generalized FO terms, which include filenames, numbers, etc.*)
fun termlist x = (term ::: Scan.repeat ($$"," |-- term)) x
and term x = (quoted >> atom || integer>>Int || truefalse ||
Symbol.scan_id -- Scan.optional ($$"(" |-- termlist --| $$")") [] >> Br ||
$$"(" |-- term --| $$")" ||
$$"[" |-- Scan.optional termlist [] --| $$"]" >> listof) x;
fun negate t = Br("c_Not", [t]);
fun equate (t1,t2) = Br("c_equal", [t1,t2]);
(*Apply equal or not-equal to a term*)
fun syn_equal (t, NONE) = t
| syn_equal (t1, SOME (NONE, t2)) = equate (t1,t2)
| syn_equal (t1, SOME (SOME _, t2)) = negate (equate (t1,t2));
(*Literals can involve negation, = and !=.*)
fun literal x = ($$"~" |-- literal >> negate ||
(term -- Scan.option (Scan.option ($$"!") --| $$"=" -- term) >> syn_equal)) x;
val literals = literal ::: Scan.repeat ($$"|" |-- literal);
(*Clause: a list of literals separated by the disjunction sign*)
val clause = $$"(" |-- literals --| $$")" || Scan.single literal;
val annotations = $$"," |-- term -- Scan.option ($$"," |-- termlist);
(*<cnf_annotated> ::= cnf(<name>,<formula_role>,<cnf_formula><annotations>).
The <name> could be an identifier, but we assume integers.*)
val tstp_line = (Scan.this_string "cnf" -- $$"(") |--
integer --| $$"," -- Symbol.scan_id --| $$"," --
clause -- Scan.option annotations --| $$ ")";
(**** INTERPRETATION OF TSTP SYNTAX TREES ****)
exception STREE of stree;
(*If string s has the prefix s1, return the result of deleting it.*)
fun strip_prefix s1 s =
if String.isPrefix s1 s
then SOME (undo_ascii_of (String.extract (s, size s1, NONE)))
else NONE;
(*Invert the table of translations between Isabelle and ATPs*)
val type_const_trans_table_inv =
Symtab.make (map swap (Symtab.dest type_const_trans_table));
fun invert_type_const c =
case Symtab.lookup type_const_trans_table_inv c of
SOME c' => c'
| NONE => c;
fun make_tvar b = TVar(("'" ^ b, 0), HOLogic.typeS);
fun make_var (b,T) = Var((b,0),T);
(*Type variables are given the basic sort, HOL.type. Some will later be constrained
by information from type literals, or by type inference.*)
fun type_of_stree t =
case t of
Int _ => raise STREE t
| Br (a,ts) =>
let val Ts = map type_of_stree ts
in
case strip_prefix tconst_prefix a of
SOME b => Type(invert_type_const b, Ts)
| NONE =>
if not (null ts) then raise STREE t (*only tconsts have type arguments*)
else
case strip_prefix tfree_prefix a of
SOME b => TFree("'" ^ b, HOLogic.typeS)
| NONE =>
case strip_prefix tvar_prefix a of
SOME b => make_tvar b
| NONE => make_tvar a (*Variable from the ATP, say X1*)
end;
(*Invert the table of translations between Isabelle and ATPs*)
val const_trans_table_inv =
Symtab.update ("fequal", "op =")
(Symtab.make (map swap (Symtab.dest const_trans_table)));
fun invert_const c =
case Symtab.lookup const_trans_table_inv c of
SOME c' => c'
| NONE => c;
(*The number of type arguments of a constant, zero if it's monomorphic*)
fun num_typargs thy s = length (Sign.const_typargs thy (s, Sign.the_const_type thy s));
(*Generates a constant, given its type arguments*)
fun const_of thy (a,Ts) = Const(a, Sign.const_instance thy (a,Ts));
(*First-order translation. No types are known for variables. HOLogic.typeT should allow
them to be inferred.*)
fun term_of_stree args thy t =
case t of
Int _ => raise STREE t
| Br ("hBOOL",[t]) => term_of_stree [] thy t (*ignore hBOOL*)
| Br ("hAPP",[t,u]) => term_of_stree (u::args) thy t
| Br (a,ts) =>
case strip_prefix const_prefix a of
SOME "equal" =>
list_comb(Const (@{const_name "op ="}, HOLogic.typeT), List.map (term_of_stree [] thy) ts)
| SOME b =>
let val c = invert_const b
val nterms = length ts - num_typargs thy c
val us = List.map (term_of_stree [] thy) (List.take(ts,nterms) @ args)
(*Extra args from hAPP come AFTER any arguments given directly to the
constant.*)
val Ts = List.map type_of_stree (List.drop(ts,nterms))
in list_comb(const_of thy (c, Ts), us) end
| NONE => (*a variable, not a constant*)
let val T = HOLogic.typeT
val opr = (*a Free variable is typically a Skolem function*)
case strip_prefix fixed_var_prefix a of
SOME b => Free(b,T)
| NONE =>
case strip_prefix schematic_var_prefix a of
SOME b => make_var (b,T)
| NONE => make_var (a,T) (*Variable from the ATP, say X1*)
in list_comb (opr, List.map (term_of_stree [] thy) (ts@args)) end;
(*Type class literal applied to a type. Returns triple of polarity, class, type.*)
fun constraint_of_stree pol (Br("c_Not",[t])) = constraint_of_stree (not pol) t
| constraint_of_stree pol t = case t of
Int _ => raise STREE t
| Br (a,ts) =>
(case (strip_prefix class_prefix a, map type_of_stree ts) of
(SOME b, [T]) => (pol, b, T)
| _ => raise STREE t);
(** Accumulate type constraints in a clause: negative type literals **)
fun addix (key,z) = Vartab.map_default (key,[]) (cons z);
fun add_constraint ((false, cl, TFree(a,_)), vt) = addix ((a,~1),cl) vt
| add_constraint ((false, cl, TVar(ix,_)), vt) = addix (ix,cl) vt
| add_constraint (_, vt) = vt;
(*False literals (which E includes in its proofs) are deleted*)
val nofalses = filter (not o equal HOLogic.false_const);
(*Final treatment of the list of "real" literals from a clause.*)
fun finish [] = HOLogic.true_const (*No "real" literals means only type information*)
| finish lits =
case nofalses lits of
[] => HOLogic.false_const (*The empty clause, since we started with real literals*)
| xs => foldr1 HOLogic.mk_disj (rev xs);
(*Accumulate sort constraints in vt, with "real" literals in lits.*)
fun lits_of_strees _ (vt, lits) [] = (vt, finish lits)
| lits_of_strees ctxt (vt, lits) (t::ts) =
lits_of_strees ctxt (add_constraint (constraint_of_stree true t, vt), lits) ts
handle STREE _ =>
lits_of_strees ctxt (vt, term_of_stree [] (ProofContext.theory_of ctxt) t :: lits) ts;
(*Update TVars/TFrees with detected sort constraints.*)
fun fix_sorts vt =
let fun tysubst (Type (a, Ts)) = Type (a, map tysubst Ts)
| tysubst (TVar (xi, s)) = TVar (xi, the_default s (Vartab.lookup vt xi))
| tysubst (TFree (x, s)) = TFree (x, the_default s (Vartab.lookup vt (x, ~1)))
fun tmsubst (Const (a, T)) = Const (a, tysubst T)
| tmsubst (Free (a, T)) = Free (a, tysubst T)
| tmsubst (Var (xi, T)) = Var (xi, tysubst T)
| tmsubst (t as Bound _) = t
| tmsubst (Abs (a, T, t)) = Abs (a, tysubst T, tmsubst t)
| tmsubst (t $ u) = tmsubst t $ tmsubst u;
in fn t => if Vartab.is_empty vt then t else tmsubst t end;
(*Interpret a list of syntax trees as a clause, given by "real" literals and sort constraints.
vt0 holds the initial sort constraints, from the conjecture clauses.*)
fun clause_of_strees ctxt vt0 ts =
let val (vt, dt) = lits_of_strees ctxt (vt0,[]) ts in
singleton (Syntax.check_terms ctxt) (TypeInfer.constrain HOLogic.boolT (fix_sorts vt dt))
end;
fun gen_all_vars t = fold_rev Logic.all (OldTerm.term_vars t) t;
fun ints_of_stree_aux (Int n, ns) = n::ns
| ints_of_stree_aux (Br(_,ts), ns) = List.foldl ints_of_stree_aux ns ts;
fun ints_of_stree t = ints_of_stree_aux (t, []);
fun decode_tstp vt0 (name, role, ts, annots) ctxt =
let val deps = case annots of NONE => [] | SOME (source,_) => ints_of_stree source
val cl = clause_of_strees ctxt vt0 ts
in ((name, role, cl, deps), fold Variable.declare_term (OldTerm.term_frees cl) ctxt) end;
fun dest_tstp ((((name, role), ts), annots), chs) =
case chs of
"."::_ => (name, role, ts, annots)
| _ => error ("TSTP line not terminated by \".\": " ^ implode chs);
(** Global sort constraints on TFrees (from tfree_tcs) are positive unit clauses. **)
fun add_tfree_constraint ((true, cl, TFree(a,_)), vt) = addix ((a,~1),cl) vt
| add_tfree_constraint (_, vt) = vt;
fun tfree_constraints_of_clauses vt [] = vt
| tfree_constraints_of_clauses vt ([lit]::tss) =
(tfree_constraints_of_clauses (add_tfree_constraint (constraint_of_stree true lit, vt)) tss
handle STREE _ => (*not a positive type constraint: ignore*)
tfree_constraints_of_clauses vt tss)
| tfree_constraints_of_clauses vt (_::tss) = tfree_constraints_of_clauses vt tss;
(**** Translation of TSTP files to Isar Proofs ****)
fun decode_tstp_list ctxt tuples =
let val vt0 = tfree_constraints_of_clauses Vartab.empty (map #3 tuples)
in #1 (fold_map (decode_tstp vt0) tuples ctxt) end;
(** Finding a matching assumption. The literals may be permuted, and variable names
may disagree. We have to try all combinations of literals (quadratic!) and
match up the variable names consistently. **)
fun strip_alls_aux n (Const(@{const_name all}, _)$Abs(a,T,t)) =
strip_alls_aux (n+1) (subst_bound (Var ((a,n), T), t))
| strip_alls_aux _ t = t;
val strip_alls = strip_alls_aux 0;
exception MATCH_LITERAL;
(*Ignore types: they are not to be trusted...*)
fun match_literal (t1$u1) (t2$u2) env =
match_literal t1 t2 (match_literal u1 u2 env)
| match_literal (Abs (_,_,t1)) (Abs (_,_,t2)) env =
match_literal t1 t2 env
| match_literal (Bound i1) (Bound i2) env =
if i1=i2 then env else raise MATCH_LITERAL
| match_literal (Const(a1,_)) (Const(a2,_)) env =
if a1=a2 then env else raise MATCH_LITERAL
| match_literal (Free(a1,_)) (Free(a2,_)) env =
if a1=a2 then env else raise MATCH_LITERAL
| match_literal (Var(ix1,_)) (Var(ix2,_)) env = insert (op =) (ix1,ix2) env
| match_literal _ _ _ = raise MATCH_LITERAL;
(*Checking that all variable associations are unique. The list env contains no
repetitions, but does it contain say (x,y) and (y,y)? *)
fun good env =
let val (xs,ys) = ListPair.unzip env
in not (has_duplicates (op=) xs orelse has_duplicates (op=) ys) end;
(*Match one list of literals against another, ignoring types and the order of
literals. Sorting is unreliable because we don't have types or variable names.*)
fun matches_aux _ [] [] = true
| matches_aux env (lit::lits) ts =
let fun match1 us [] = false
| match1 us (t::ts) =
let val env' = match_literal lit t env
in (good env' andalso matches_aux env' lits (us@ts)) orelse
match1 (t::us) ts
end
handle MATCH_LITERAL => match1 (t::us) ts
in match1 [] ts end;
(*Is this length test useful?*)
fun matches (lits1,lits2) =
length lits1 = length lits2 andalso
matches_aux [] (map Envir.eta_contract lits1) (map Envir.eta_contract lits2);
fun permuted_clause t =
let val lits = HOLogic.disjuncts t
fun perm [] = NONE
| perm (ctm::ctms) =
if matches (lits, HOLogic.disjuncts (HOLogic.dest_Trueprop (strip_alls ctm)))
then SOME ctm else perm ctms
in perm end;
(*ctms is a list of conjecture clauses as yielded by Isabelle. Those returned by the
ATP may have their literals reordered.*)
fun isar_proof_body ctxt ctms =
let
val _ = trace_proof_msg (K "\n\nisar_proof_body: start\n")
val string_of_term = PrintMode.setmp [] (Syntax.string_of_term ctxt)
fun have_or_show "show" _ = "show \""
| have_or_show have lname = have ^ " " ^ lname ^ ": \""
fun do_line _ (lname, t, []) =
(* No deps: it's a conjecture clause, with no proof. *)
(case permuted_clause t ctms of
SOME u => "assume " ^ lname ^ ": \"" ^ string_of_term u ^ "\"\n"
| NONE => raise TERM ("Sledgehammer_Proof_Reconstruct.isar_proof_body",
[t]))
| do_line have (lname, t, deps) =
have_or_show have lname ^
string_of_term (gen_all_vars (HOLogic.mk_Trueprop t)) ^
"\"\n by (metis " ^ space_implode " " deps ^ ")\n"
fun do_lines [(lname, t, deps)] = [do_line "show" (lname, t, deps)]
| do_lines ((lname, t, deps) :: lines) =
do_line "have" (lname, t, deps) :: do_lines lines
in setmp_CRITICAL show_sorts (Config.get ctxt recon_sorts) do_lines end;
fun unequal t (_, t', _) = not (t aconv t');
(*No "real" literals means only type information*)
fun eq_types t = t aconv HOLogic.true_const;
fun replace_dep (old:int, new) dep = if dep=old then new else [dep];
fun replace_deps (old:int, new) (lno, t, deps) =
(lno, t, List.foldl (uncurry (union (op =))) [] (map (replace_dep (old, new)) deps));
(*Discard axioms; consolidate adjacent lines that prove the same clause, since they differ
only in type information.*)
fun add_prfline ((lno, "axiom", t, []), lines) = (*axioms are not proof lines*)
if eq_types t (*must be clsrel/clsarity: type information, so delete refs to it*)
then map (replace_deps (lno, [])) lines
else
(case take_prefix (unequal t) lines of
(_,[]) => lines (*no repetition of proof line*)
| (pre, (lno', _, _) :: post) => (*repetition: replace later line by earlier one*)
pre @ map (replace_deps (lno', [lno])) post)
| add_prfline ((lno, _, t, []), lines) = (*no deps: conjecture clause*)
(lno, t, []) :: lines
| add_prfline ((lno, _, t, deps), lines) =
if eq_types t then (lno, t, deps) :: lines
(*Type information will be deleted later; skip repetition test.*)
else (*FIXME: Doesn't this code risk conflating proofs involving different types??*)
case take_prefix (unequal t) lines of
(_,[]) => (lno, t, deps) :: lines (*no repetition of proof line*)
| (pre, (lno', t', _) :: post) =>
(lno, t', deps) :: (*repetition: replace later line by earlier one*)
(pre @ map (replace_deps (lno', [lno])) post);
(*Recursively delete empty lines (type information) from the proof.*)
fun add_nonnull_prfline ((lno, t, []), lines) = (*no dependencies, so a conjecture clause*)
if eq_types t (*must be type information, tfree_tcs, clsrel, clsarity: delete refs to it*)
then delete_dep lno lines
else (lno, t, []) :: lines
| add_nonnull_prfline ((lno, t, deps), lines) = (lno, t, deps) :: lines
and delete_dep lno lines = List.foldr add_nonnull_prfline [] (map (replace_deps (lno, [])) lines);
fun bad_free (Free (a,_)) = String.isPrefix skolem_prefix a
| bad_free _ = false;
(*TVars are forbidden in goals. Also, we don't want lines with <2 dependencies.
To further compress proofs, setting modulus:=n deletes every nth line, and nlines
counts the number of proof lines processed so far.
Deleted lines are replaced by their own dependencies. Note that the "add_nonnull_prfline"
phase may delete some dependencies, hence this phase comes later.*)
fun add_wanted_prfline ctxt ((lno, t, []), (nlines, lines)) =
(nlines, (lno, t, []) :: lines) (*conjecture clauses must be kept*)
| add_wanted_prfline ctxt ((lno, t, deps), (nlines, lines)) =
if eq_types t orelse not (null (Term.add_tvars t [])) orelse
exists_subterm bad_free t orelse
(not (null lines) andalso (*final line can't be deleted for these reasons*)
(length deps < 2 orelse nlines mod (Config.get ctxt modulus) <> 0))
then (nlines+1, map (replace_deps (lno, deps)) lines) (*Delete line*)
else (nlines+1, (lno, t, deps) :: lines);
(*Replace numeric proof lines by strings, either from thm_names or sequential line numbers*)
fun stringify_deps thm_names deps_map [] = []
| stringify_deps thm_names deps_map ((lno, t, deps) :: lines) =
if lno <= Vector.length thm_names (*axiom*)
then (Vector.sub(thm_names,lno-1), t, []) :: stringify_deps thm_names deps_map lines
else let val lname = Int.toString (length deps_map)
fun fix lno = if lno <= Vector.length thm_names
then SOME(Vector.sub(thm_names,lno-1))
else AList.lookup op= deps_map lno;
in (lname, t, map_filter fix (distinct (op=) deps)) ::
stringify_deps thm_names ((lno,lname)::deps_map) lines
end;
val proofstart = "proof (neg_clausify)\n";
fun isar_header [] = proofstart
| isar_header ts = proofstart ^ "fix " ^ space_implode " " ts ^ "\n";
fun isar_proof_from_tstp_file cnfs ctxt th sgno thm_names =
let
val _ = trace_proof_msg (K "\nisar_proof_from_tstp_file: start\n")
val tuples = map (dest_tstp o tstp_line o explode) cnfs
val _ = trace_proof_msg (fn () =>
Int.toString (length tuples) ^ " tuples extracted\n")
val ctxt = ProofContext.set_mode ProofContext.mode_schematic ctxt
val raw_lines = List.foldr add_prfline [] (decode_tstp_list ctxt tuples)
val _ = trace_proof_msg (fn () =>
Int.toString (length raw_lines) ^ " raw_lines extracted\n")
val nonnull_lines = List.foldr add_nonnull_prfline [] raw_lines
val _ = trace_proof_msg (fn () =>
Int.toString (length nonnull_lines) ^ " nonnull_lines extracted\n")
val (_, lines) = List.foldr (add_wanted_prfline ctxt) (0,[]) nonnull_lines
val _ = trace_proof_msg (fn () =>
Int.toString (length lines) ^ " lines extracted\n")
val (ccls, fixes) = neg_conjecture_clauses ctxt th sgno
val _ = trace_proof_msg (fn () =>
Int.toString (length ccls) ^ " conjecture clauses\n")
val ccls = map forall_intr_vars ccls
val _ = app (fn th => trace_proof_msg
(fn () => "\nccl: " ^ string_of_thm ctxt th)) ccls
val body = isar_proof_body ctxt (map prop_of ccls)
(stringify_deps thm_names [] lines)
val _ = trace_proof_msg (K "\nisar_proof_from_tstp_file: finishing\n")
in isar_header (map #1 fixes) ^ implode body ^ "qed\n" end
handle STREE _ => error "Could not extract proof (ATP output malformed?)";
(*=== EXTRACTING PROOF-TEXT === *)
val begin_proof_strs = ["# SZS output start CNFRefutation.",
"=========== Refutation ==========",
"Here is a proof"];
val end_proof_strs = ["# SZS output end CNFRefutation",
"======= End of refutation =======",
"Formulae used in the proof"];
fun get_proof_extract proof =
let
(*splits to_split by the first possible of a list of splitters*)
val (begin_string, end_string) =
(find_first (fn s => String.isSubstring s proof) begin_proof_strs,
find_first (fn s => String.isSubstring s proof) end_proof_strs)
in
if is_none begin_string orelse is_none end_string
then error "Could not extract proof (no substring indicating a proof)"
else proof |> first_field (the begin_string) |> the |> snd
|> first_field (the end_string) |> the |> fst
end;
(* ==== CHECK IF PROOF WAS SUCCESSFUL === *)
fun is_proof_well_formed proof =
exists (fn s => String.isSubstring s proof) begin_proof_strs andalso
exists (fn s => String.isSubstring s proof) end_proof_strs
(* === EXTRACTING LEMMAS === *)
(* lines have the form "cnf(108, axiom, ...",
the number (108) has to be extracted)*)
fun get_step_nums false extract =
let
val toks = String.tokens (not o Char.isAlphaNum)
fun inputno ("cnf" :: ntok :: "axiom" :: _) = Int.fromString ntok
| inputno ("cnf" :: ntok :: "negated" :: "conjecture" :: _) =
Int.fromString ntok
| inputno _ = NONE
val lines = split_lines extract
in map_filter (inputno o toks) lines end
(*String contains multiple lines. We want those of the form
"253[0:Inp] et cetera..."
A list consisting of the first number in each line is returned. *)
| get_step_nums true proofextract =
let val toks = String.tokens (not o Char.isAlphaNum)
fun inputno (ntok::"0"::"Inp"::_) = Int.fromString ntok
| inputno _ = NONE
val lines = split_lines proofextract
in map_filter (inputno o toks) lines end
(*extracting lemmas from tstp-output between the lines from above*)
fun extract_lemmas get_step_nums (proof, thm_names, conj_count, _, _, _) =
let
(* get the names of axioms from their numbers*)
fun get_axiom_names thm_names step_nums =
let
val last_axiom = Vector.length thm_names
fun is_axiom n = n <= last_axiom
fun is_conj n = n >= fst conj_count andalso
n < fst conj_count + snd conj_count
fun getname i = Vector.sub(thm_names, i-1)
in
(sort_distinct string_ord (filter (fn x => x <> "??.unknown")
(map getname (filter is_axiom step_nums))),
exists is_conj step_nums)
end
in get_axiom_names thm_names (get_step_nums (get_proof_extract proof)) end;
(*Used to label theorems chained into the sledgehammer call*)
val chained_hint = "CHAINED";
val kill_chained = filter_out (curry (op =) chained_hint)
(* metis-command *)
fun metis_line [] = "apply metis"
| metis_line xs = "apply (metis " ^ space_implode " " xs ^ ")"
(* atp_minimize [atp=<prover>] <lemmas> *)
fun minimize_line _ [] = ""
| minimize_line name lemmas = "For minimizing the number of lemmas try this command:\n" ^
Markup.markup Markup.sendback ("atp_minimize [atp = " ^ name ^ "] " ^
space_implode " " (kill_chained lemmas))
fun metis_lemma_list dfg name result =
let val (lemmas, used_conj) = extract_lemmas (get_step_nums dfg) result in
(Markup.markup Markup.sendback (metis_line (kill_chained lemmas)) ^ "\n" ^
minimize_line name lemmas ^
(if used_conj then
""
else
"\nWarning: The goal is provable because the context is inconsistent."),
kill_chained lemmas)
end;
fun structured_isar_proof name (result as (proof, thm_names, conj_count, ctxt,
goal, subgoalno)) =
let
(* Could use "split_lines", but it can return blank lines *)
val lines = String.tokens (equal #"\n");
val kill_spaces =
String.translate (fn c => if Char.isSpace c then "" else str c)
val extract = get_proof_extract proof
val cnfs = filter (String.isPrefix "cnf(") (map kill_spaces (lines extract))
val (one_line_proof, lemma_names) = metis_lemma_list false name result
val tokens = String.tokens (fn c => c = #" ") one_line_proof
val isar_proof =
if member (op =) tokens chained_hint then ""
else isar_proof_from_tstp_file cnfs ctxt goal subgoalno thm_names
in
(one_line_proof ^ "\n\n" ^ Markup.markup Markup.sendback isar_proof,
lemma_names)
end
end;