(* Title: CCL/typecheck
ID: $Id$
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
*)
(*** Lemmas for constructors and subtypes ***)
(* 0-ary constructors do not need additional rules as they are handled *)
(* correctly by applying SubtypeI *)
(*
val Subtype_canTs =
let fun tac prems = cut_facts_tac prems 1 THEN
REPEAT (ares_tac (SubtypeI::canTs@icanTs) 1 ORELSE
etac SubtypeE 1)
fun solve s = prove_goal Type.thy s (fn prems => [tac prems])
in map solve
["P(one) ==> one : {x:Unit.P(x)}",
"P(true) ==> true : {x:Bool.P(x)}",
"P(false) ==> false : {x:Bool.P(x)}",
"a : {x:A. b:{y:B(a).P(<x,y>)}} ==> <a,b> : {x:Sigma(A,B).P(x)}",
"a : {x:A.P(inl(x))} ==> inl(a) : {x:A+B.P(x)}",
"b : {x:B.P(inr(x))} ==> inr(b) : {x:A+B.P(x)}",
"P(zero) ==> zero : {x:Nat.P(x)}",
"a : {x:Nat.P(succ(x))} ==> succ(a) : {x:Nat.P(x)}",
"P([]) ==> [] : {x:List(A).P(x)}",
"h : {x:A. t : {y:List(A).P(x$y)}} ==> h$t : {x:List(A).P(x)}"
] end;
*)
val Subtype_canTs =
let fun tac prems = cut_facts_tac prems 1 THEN
REPEAT (ares_tac (SubtypeI::canTs@icanTs) 1 ORELSE
etac SubtypeE 1)
fun solve s = prove_goal Type.thy s (fn prems => [tac prems])
in map solve
["a : {x:A. b:{y:B(a).P(<x,y>)}} ==> <a,b> : {x:Sigma(A,B).P(x)}",
"a : {x:A. P(inl(x))} ==> inl(a) : {x:A+B. P(x)}",
"b : {x:B. P(inr(x))} ==> inr(b) : {x:A+B. P(x)}",
"a : {x:Nat. P(succ(x))} ==> succ(a) : {x:Nat. P(x)}",
"h : {x:A. t : {y:List(A).P(x$y)}} ==> h$t : {x:List(A).P(x)}"
] end;
val prems = goal Type.thy
"[| f(t):B; ~t=bot |] ==> let x be t in f(x) : B";
by (cut_facts_tac prems 1);
by (etac (letB RS ssubst) 1);
by (assume_tac 1);
qed "letT";
val prems = goal Type.thy
"[| a:A; f : Pi(A,B) |] ==> f ` a : B(a)";
by (REPEAT (ares_tac (applyT::prems) 1));
qed "applyT2";
val prems = goal Type.thy
"[| a:A; a:A ==> P(a) |] ==> a : {x:A. P(x)}";
by (fast_tac (type_cs addSIs prems) 1);
qed "rcall_lemma1";
val prems = goal Type.thy
"[| a:{x:A. Q(x)}; [| a:A; Q(a) |] ==> P(a) |] ==> a : {x:A. P(x)}";
by (cut_facts_tac prems 1);
by (fast_tac (type_cs addSIs prems) 1);
qed "rcall_lemma2";
val rcall_lemmas = [asm_rl,rcall_lemma1,SubtypeD1,rcall_lemma2];
(***********************************TYPECHECKING*************************************)
fun bvars (Const("all",_) $ Abs(s,_,t)) l = bvars t (s::l)
| bvars _ l = l;
fun get_bno l n (Const("all",_) $ Abs(s,_,t)) = get_bno (s::l) n t
| get_bno l n (Const("Trueprop",_) $ t) = get_bno l n t
| get_bno l n (Const("Ball",_) $ _ $ Abs(s,_,t)) = get_bno (s::l) (n+1) t
| get_bno l n (Const("op :",_) $ t $ _) = get_bno l n t
| get_bno l n (t $ s) = get_bno l n t
| get_bno l n (Bound m) = (m-length(l),n);
(* Not a great way of identifying induction hypothesis! *)
fun could_IH x = could_unify(x,hd (prems_of rcallT)) orelse
could_unify(x,hd (prems_of rcall2T)) orelse
could_unify(x,hd (prems_of rcall3T));
fun IHinst tac rls = SUBGOAL (fn (Bi,i) =>
let val bvs = bvars Bi [];
val ihs = List.filter could_IH (Logic.strip_assums_hyp Bi);
val rnames = map (fn x=>
let val (a,b) = get_bno [] 0 x
in (List.nth(bvs,a),b) end) ihs;
fun try_IHs [] = no_tac
| try_IHs ((x,y)::xs) = tac [("g",x)] (List.nth(rls,y-1)) i ORELSE (try_IHs xs);
in try_IHs rnames end);
(*****)
val type_rls = canTs@icanTs@(applyT2::ncanTs)@incanTs@
precTs@letrecTs@[letT]@Subtype_canTs;
fun is_rigid_prog t =
case (Logic.strip_assums_concl t) of
(Const("Trueprop",_) $ (Const("op :",_) $ a $ _)) => (term_vars a = [])
| _ => false;
fun rcall_tac i = let fun tac ps rl i = res_inst_tac ps rl i THEN atac i;
in IHinst tac rcallTs i end THEN
eresolve_tac rcall_lemmas i;
fun raw_step_tac prems i = ares_tac (prems@type_rls) i ORELSE
rcall_tac i ORELSE
ematch_tac [SubtypeE] i ORELSE
match_tac [SubtypeI] i;
fun tc_step_tac prems = SUBGOAL (fn (Bi,i) =>
if is_rigid_prog Bi then raw_step_tac prems i else no_tac);
fun typechk_tac rls i = SELECT_GOAL (REPEAT_FIRST (tc_step_tac rls)) i;
val tac = typechk_tac [] 1;
(*** Clean up Correctness Condictions ***)
val clean_ccs_tac = REPEAT_FIRST (eresolve_tac ([SubtypeE]@rmIHs) ORELSE'
hyp_subst_tac);
val clean_ccs_tac =
let fun tac ps rl i = eres_inst_tac ps rl i THEN atac i;
in TRY (REPEAT_FIRST (IHinst tac hyprcallTs ORELSE'
eresolve_tac ([asm_rl,SubtypeE]@rmIHs) ORELSE'
hyp_subst_tac)) end;
fun gen_ccs_tac rls i = SELECT_GOAL (REPEAT_FIRST (tc_step_tac rls) THEN
clean_ccs_tac) i;