src/FOL/ex/Quantifiers_Int.thy
author haftmann
Sat, 19 Oct 2019 09:15:37 +0000
changeset 70902 cb161182ce7f
parent 69593 3dda49e08b9d
permissions -rw-r--r--
generalized

(*  Title:      FOL/ex/Quantifiers_Int.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1991  University of Cambridge
*)

section \<open>First-Order Logic: quantifier examples (intuitionistic version)\<close>

theory Quantifiers_Int
imports IFOL
begin

lemma \<open>(\<forall>x y. P(x,y)) \<longrightarrow> (\<forall>y x. P(x,y))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

lemma \<open>(\<exists>x y. P(x,y)) \<longrightarrow> (\<exists>y x. P(x,y))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")


\<comment> \<open>Converse is false\<close>
lemma \<open>(\<forall>x. P(x)) \<or> (\<forall>x. Q(x)) \<longrightarrow> (\<forall>x. P(x) \<or> Q(x))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

lemma \<open>(\<forall>x. P \<longrightarrow> Q(x)) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x. Q(x)))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")


lemma \<open>(\<forall>x. P(x) \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x. P(x)) \<longrightarrow> Q)\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")


text \<open>Some harder ones\<close>

lemma \<open>(\<exists>x. P(x) \<or> Q(x)) \<longleftrightarrow> (\<exists>x. P(x)) \<or> (\<exists>x. Q(x))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

\<comment> \<open>Converse is false\<close>
lemma \<open>(\<exists>x. P(x) \<and> Q(x)) \<longrightarrow> (\<exists>x. P(x)) \<and> (\<exists>x. Q(x))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")


text \<open>Basic test of quantifier reasoning\<close>

\<comment> \<open>TRUE\<close>
lemma \<open>(\<exists>y. \<forall>x. Q(x,y)) \<longrightarrow> (\<forall>x. \<exists>y. Q(x,y))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

lemma \<open>(\<forall>x. Q(x)) \<longrightarrow> (\<exists>x. Q(x))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")


text \<open>The following should fail, as they are false!\<close>

lemma \<open>(\<forall>x. \<exists>y. Q(x,y)) \<longrightarrow> (\<exists>y. \<forall>x. Q(x,y))\<close>
  apply (tactic "IntPr.fast_tac \<^context> 1")?
  oops

lemma \<open>(\<exists>x. Q(x)) \<longrightarrow> (\<forall>x. Q(x))\<close>
  apply (tactic "IntPr.fast_tac \<^context> 1")?
  oops

schematic_goal \<open>P(?a) \<longrightarrow> (\<forall>x. P(x))\<close>
  apply (tactic "IntPr.fast_tac \<^context> 1")?
  oops

schematic_goal \<open>(P(?a) \<longrightarrow> (\<forall>x. Q(x))) \<longrightarrow> (\<forall>x. P(x) \<longrightarrow> Q(x))\<close>
  apply (tactic "IntPr.fast_tac \<^context> 1")?
  oops


text \<open>Back to things that are provable \dots\<close>

lemma \<open>(\<forall>x. P(x) \<longrightarrow> Q(x)) \<and> (\<exists>x. P(x)) \<longrightarrow> (\<exists>x. Q(x))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

\<comment> \<open>An example of why exI should be delayed as long as possible\<close>
lemma \<open>(P \<longrightarrow> (\<exists>x. Q(x))) \<and> P \<longrightarrow> (\<exists>x. Q(x))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

schematic_goal \<open>(\<forall>x. P(x) \<longrightarrow> Q(f(x))) \<and> (\<forall>x. Q(x) \<longrightarrow> R(g(x))) \<and> P(d) \<longrightarrow> R(?a)\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

lemma \<open>(\<forall>x. Q(x)) \<longrightarrow> (\<exists>x. Q(x))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")


text \<open>Some slow ones\<close>

\<comment> \<open>Principia Mathematica *11.53\<close>
lemma \<open>(\<forall>x y. P(x) \<longrightarrow> Q(y)) \<longleftrightarrow> ((\<exists>x. P(x)) \<longrightarrow> (\<forall>y. Q(y)))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

(*Principia Mathematica *11.55  *)
lemma \<open>(\<exists>x y. P(x) \<and> Q(x,y)) \<longleftrightarrow> (\<exists>x. P(x) \<and> (\<exists>y. Q(x,y)))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

(*Principia Mathematica *11.61  *)
lemma \<open>(\<exists>y. \<forall>x. P(x) \<longrightarrow> Q(x,y)) \<longrightarrow> (\<forall>x. P(x) \<longrightarrow> (\<exists>y. Q(x,y)))\<close>
  by (tactic "IntPr.fast_tac \<^context> 1")

end