more complete report positions, notably for command 'back' (amending eca176f773e0);
(* Title: HOL/Nat.thy Author: Tobias Nipkow Author: Lawrence C Paulson Author: Markus Wenzel*)section \<open>Natural numbers\<close>theory Natimports Inductive Typedef Fun Ringsbeginsubsection \<open>Type \<open>ind\<close>\<close>typedecl indaxiomatization Zero_Rep :: ind and Suc_Rep :: "ind \<Rightarrow> ind" \<comment> \<open>The axiom of infinity in 2 parts:\<close> where Suc_Rep_inject: "Suc_Rep x = Suc_Rep y \<Longrightarrow> x = y" and Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"subsection \<open>Type nat\<close>text \<open>Type definition\<close>inductive Nat :: "ind \<Rightarrow> bool" where Zero_RepI: "Nat Zero_Rep" | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)"typedef nat = "{n. Nat n}" morphisms Rep_Nat Abs_Nat using Nat.Zero_RepI by autolemma Nat_Rep_Nat: "Nat (Rep_Nat n)" using Rep_Nat by simplemma Nat_Abs_Nat_inverse: "Nat n \<Longrightarrow> Rep_Nat (Abs_Nat n) = n" using Abs_Nat_inverse by simplemma Nat_Abs_Nat_inject: "Nat n \<Longrightarrow> Nat m \<Longrightarrow> Abs_Nat n = Abs_Nat m \<longleftrightarrow> n = m" using Abs_Nat_inject by simpinstantiation nat :: zerobegindefinition Zero_nat_def: "0 = Abs_Nat Zero_Rep"instance ..enddefinition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"lemma Suc_not_Zero: "Suc m \<noteq> 0" by (simp add: Zero_nat_def Suc_def Suc_RepI Zero_RepI Nat_Abs_Nat_inject Suc_Rep_not_Zero_Rep Nat_Rep_Nat)lemma Zero_not_Suc: "0 \<noteq> Suc m" by (rule not_sym) (rule Suc_not_Zero)lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y" by (rule iffI, rule Suc_Rep_inject) simp_alllemma nat_induct0: assumes "P 0" and "\<And>n. P n \<Longrightarrow> P (Suc n)" shows "P n"proof - have "P (Abs_Nat (Rep_Nat n))" using assms unfolding Zero_nat_def Suc_def by (iprover intro: Nat_Rep_Nat [THEN Nat.induct] elim: Nat_Abs_Nat_inverse [THEN subst]) then show ?thesis by (simp add: Rep_Nat_inverse)qedfree_constructors case_nat for "0 :: nat" | Suc pred where "pred (0 :: nat) = (0 :: nat)" apply atomize_elim apply (rename_tac n, induct_tac n rule: nat_induct0, auto) apply (simp add: Suc_def Nat_Abs_Nat_inject Nat_Rep_Nat Suc_RepI Suc_Rep_inject' Rep_Nat_inject) apply (simp only: Suc_not_Zero) done\<comment> \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close>setup \<open>Sign.mandatory_path "old"\<close>old_rep_datatype "0 :: nat" Suc by (erule nat_induct0) autosetup \<open>Sign.parent_path\<close>\<comment> \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close>setup \<open>Sign.mandatory_path "nat"\<close>declare old.nat.inject[iff del] and old.nat.distinct(1)[simp del, induct_simp del]lemmas induct = old.nat.inductlemmas inducts = old.nat.inductslemmas rec = old.nat.reclemmas simps = nat.inject nat.distinct nat.case nat.recsetup \<open>Sign.parent_path\<close>abbreviation rec_nat :: "'a \<Rightarrow> (nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a" where "rec_nat \<equiv> old.rec_nat"declare nat.sel[code del]hide_const (open) Nat.pred \<comment> \<open>hide everything related to the selector\<close>hide_fact nat.case_eq_if nat.collapse nat.expand nat.sel nat.exhaust_sel nat.split_sel nat.split_sel_asmlemma nat_exhaust [case_names 0 Suc, cases type: nat]: "(y = 0 \<Longrightarrow> P) \<Longrightarrow> (\<And>nat. y = Suc nat \<Longrightarrow> P) \<Longrightarrow> P" \<comment> \<open>for backward compatibility -- names of variables differ\<close> by (rule old.nat.exhaust)lemma nat_induct [case_names 0 Suc, induct type: nat]: fixes n assumes "P 0" and "\<And>n. P n \<Longrightarrow> P (Suc n)" shows "P n" \<comment> \<open>for backward compatibility -- names of variables differ\<close> using assms by (rule nat.induct)hide_fact nat_exhaust nat_induct0ML \<open>val nat_basic_lfp_sugar = let val ctr_sugar = the (Ctr_Sugar.ctr_sugar_of_global \<^theory> \<^type_name>\<open>nat\<close>); val recx = Logic.varify_types_global \<^term>\<open>rec_nat\<close>; val C = body_type (fastype_of recx); in {T = HOLogic.natT, fp_res_index = 0, C = C, fun_arg_Tsss = [[], [[HOLogic.natT, C]]], ctr_sugar = ctr_sugar, recx = recx, rec_thms = @{thms nat.rec}} end;\<close>setup \<open>let fun basic_lfp_sugars_of _ [\<^typ>\<open>nat\<close>] _ _ ctxt = ([], [0], [nat_basic_lfp_sugar], [], [], [], TrueI (*dummy*), [], false, ctxt) | basic_lfp_sugars_of bs arg_Ts callers callssss ctxt = BNF_LFP_Rec_Sugar.default_basic_lfp_sugars_of bs arg_Ts callers callssss ctxt;in BNF_LFP_Rec_Sugar.register_lfp_rec_extension {nested_simps = [], special_endgame_tac = K (K (K (K no_tac))), is_new_datatype = K (K true), basic_lfp_sugars_of = basic_lfp_sugars_of, rewrite_nested_rec_call = NONE}end\<close>text \<open>Injectiveness and distinctness lemmas\<close>lemma inj_Suc [simp]: "inj_on Suc N" by (simp add: inj_on_def)lemma bij_betw_Suc [simp]: "bij_betw Suc M N \<longleftrightarrow> Suc ` M = N" by (simp add: bij_betw_def)lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R" by (rule notE) (rule Suc_not_Zero)lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R" by (rule Suc_neq_Zero) (erule sym)lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y" by (rule inj_Suc [THEN injD])lemma n_not_Suc_n: "n \<noteq> Suc n" by (induct n) simp_alllemma Suc_n_not_n: "Suc n \<noteq> n" by (rule not_sym) (rule n_not_Suc_n)text \<open>A special form of induction for reasoning about \<^term>\<open>m < n\<close> and \<^term>\<open>m - n\<close>.\<close>lemma diff_induct: assumes "\<And>x. P x 0" and "\<And>y. P 0 (Suc y)" and "\<And>x y. P x y \<Longrightarrow> P (Suc x) (Suc y)" shows "P m n"proof (induct n arbitrary: m) case 0 show ?case by (rule assms(1))next case (Suc n) show ?case proof (induct m) case 0 show ?case by (rule assms(2)) next case (Suc m) from \<open>P m n\<close> show ?case by (rule assms(3)) qedqedsubsection \<open>Arithmetic operators\<close>instantiation nat :: comm_monoid_diffbeginprimrec plus_nat where add_0: "0 + n = (n::nat)" | add_Suc: "Suc m + n = Suc (m + n)"lemma add_0_right [simp]: "m + 0 = m" for m :: nat by (induct m) simp_alllemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" by (induct m) simp_alldeclare add_0 [code]lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" by simpprimrec minus_nat where diff_0 [code]: "m - 0 = (m::nat)" | diff_Suc: "m - Suc n = (case m - n of 0 \<Rightarrow> 0 | Suc k \<Rightarrow> k)"declare diff_Suc [simp del]lemma diff_0_eq_0 [simp, code]: "0 - n = 0" for n :: nat by (induct n) (simp_all add: diff_Suc)lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n" by (induct n) (simp_all add: diff_Suc)instanceproof fix n m q :: nat show "(n + m) + q = n + (m + q)" by (induct n) simp_all show "n + m = m + n" by (induct n) simp_all show "m + n - m = n" by (induct m) simp_all show "n - m - q = n - (m + q)" by (induct q) (simp_all add: diff_Suc) show "0 + n = n" by simp show "0 - n = 0" by simpqedendhide_fact (open) add_0 add_0_right diff_0instantiation nat :: comm_semiring_1_cancelbegindefinition One_nat_def [simp]: "1 = Suc 0"primrec times_nat where mult_0: "0 * n = (0::nat)" | mult_Suc: "Suc m * n = n + (m * n)"lemma mult_0_right [simp]: "m * 0 = 0" for m :: nat by (induct m) simp_alllemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" by (induct m) (simp_all add: add.left_commute)lemma add_mult_distrib: "(m + n) * k = (m * k) + (n * k)" for m n k :: nat by (induct m) (simp_all add: add.assoc)instanceproof fix k n m q :: nat show "0 \<noteq> (1::nat)" by simp show "1 * n = n" by simp show "n * m = m * n" by (induct n) simp_all show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib) show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib) show "k * (m - n) = (k * m) - (k * n)" by (induct m n rule: diff_induct) simp_allqedendsubsubsection \<open>Addition\<close>text \<open>Reasoning about \<open>m + 0 = 0\<close>, etc.\<close>lemma add_is_0 [iff]: "m + n = 0 \<longleftrightarrow> m = 0 \<and> n = 0" for m n :: nat by (cases m) simp_alllemma add_is_1: "m + n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = 0 \<or> m = 0 \<and> n = Suc 0" by (cases m) simp_alllemma one_is_add: "Suc 0 = m + n \<longleftrightarrow> m = Suc 0 \<and> n = 0 \<or> m = 0 \<and> n = Suc 0" by (rule trans, rule eq_commute, rule add_is_1)lemma add_eq_self_zero: "m + n = m \<Longrightarrow> n = 0" for m n :: nat by (induct m) simp_alllemma plus_1_eq_Suc: "plus 1 = Suc" by (simp add: fun_eq_iff)lemma Suc_eq_plus1: "Suc n = n + 1" by simplemma Suc_eq_plus1_left: "Suc n = 1 + n" by simpsubsubsection \<open>Difference\<close>lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" by (simp add: diff_diff_add)lemma diff_Suc_1 [simp]: "Suc n - 1 = n" by simpsubsubsection \<open>Multiplication\<close>lemma mult_is_0 [simp]: "m * n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" for m n :: nat by (induct m) autolemma mult_eq_1_iff [simp]: "m * n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0"proof (induct m) case 0 then show ?case by simpnext case (Suc m) then show ?case by (induct n) autoqedlemma one_eq_mult_iff [simp]: "Suc 0 = m * n \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" by (simp add: eq_commute flip: mult_eq_1_iff)lemma nat_mult_eq_1_iff [simp]: "m * n = 1 \<longleftrightarrow> m = 1 \<and> n = 1" and nat_1_eq_mult_iff [simp]: "1 = m * n \<longleftrightarrow> m = 1 \<and> n = 1" for m n :: nat by autolemma mult_cancel1 [simp]: "k * m = k * n \<longleftrightarrow> m = n \<or> k = 0" for k m n :: natproof - have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n" proof (induct n arbitrary: m) case 0 then show "m = 0" by simp next case (Suc n) then show "m = Suc n" by (cases m) (simp_all add: eq_commute [of 0]) qed then show ?thesis by autoqedlemma mult_cancel2 [simp]: "m * k = n * k \<longleftrightarrow> m = n \<or> k = 0" for k m n :: nat by (simp add: mult.commute)lemma Suc_mult_cancel1: "Suc k * m = Suc k * n \<longleftrightarrow> m = n" by (subst mult_cancel1) simpsubsection \<open>Orders on \<^typ>\<open>nat\<close>\<close>subsubsection \<open>Operation definition\<close>instantiation nat :: linorderbeginprimrec less_eq_nat where "(0::nat) \<le> n \<longleftrightarrow> True" | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)"declare less_eq_nat.simps [simp del]lemma le0 [iff]: "0 \<le> n" for n :: nat by (simp add: less_eq_nat.simps)lemma [code]: "0 \<le> n \<longleftrightarrow> True" for n :: nat by simpdefinition less_nat where less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m"lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m" by (simp add: less_eq_nat.simps(2))lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n" unfolding less_eq_Suc_le ..lemma le_0_eq [iff]: "n \<le> 0 \<longleftrightarrow> n = 0" for n :: nat by (induct n) (simp_all add: less_eq_nat.simps(2))lemma not_less0 [iff]: "\<not> n < 0" for n :: nat by (simp add: less_eq_Suc_le)lemma less_nat_zero_code [code]: "n < 0 \<longleftrightarrow> False" for n :: nat by simplemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n" by (simp add: less_eq_Suc_le)lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n" by (simp add: less_eq_Suc_le)lemma Suc_less_eq2: "Suc n < m \<longleftrightarrow> (\<exists>m'. m = Suc m' \<and> n < m')" by (cases m) autolemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n" by (induct m arbitrary: n) (simp_all add: less_eq_nat.simps(2) split: nat.splits)lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n" by (cases n) (auto intro: le_SucI)lemma less_SucI: "m < n \<Longrightarrow> m < Suc n" by (simp add: less_eq_Suc_le) (erule Suc_leD)lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n" by (simp add: less_eq_Suc_le) (erule Suc_leD)instanceproof fix n m q :: nat show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n" proof (induct n arbitrary: m) case 0 then show ?case by (cases m) (simp_all add: less_eq_Suc_le) next case (Suc n) then show ?case by (cases m) (simp_all add: less_eq_Suc_le) qed show "n \<le> n" by (induct n) simp_all then show "n = m" if "n \<le> m" and "m \<le> n" using that by (induct n arbitrary: m) (simp_all add: less_eq_nat.simps(2) split: nat.splits) show "n \<le> q" if "n \<le> m" and "m \<le> q" using that proof (induct n arbitrary: m q) case 0 show ?case by simp next case (Suc n) then show ?case by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits) qed show "n \<le> m \<or> m \<le> n" by (induct n arbitrary: m) (simp_all add: less_eq_nat.simps(2) split: nat.splits)qedendinstantiation nat :: order_botbegindefinition bot_nat :: nat where "bot_nat = 0"instance by standard (simp add: bot_nat_def)endinstance nat :: no_top by standard (auto intro: less_Suc_eq_le [THEN iffD2])subsubsection \<open>Introduction properties\<close>lemma lessI [iff]: "n < Suc n" by (simp add: less_Suc_eq_le)lemma zero_less_Suc [iff]: "0 < Suc n" by (simp add: less_Suc_eq_le)subsubsection \<open>Elimination properties\<close>lemma less_not_refl: "\<not> n < n" for n :: nat by (rule order_less_irrefl)lemma less_not_refl2: "n < m \<Longrightarrow> m \<noteq> n" for m n :: nat by (rule not_sym) (rule less_imp_neq)lemma less_not_refl3: "s < t \<Longrightarrow> s \<noteq> t" for s t :: nat by (rule less_imp_neq)lemma less_irrefl_nat: "n < n \<Longrightarrow> R" for n :: nat by (rule notE, rule less_not_refl)lemma less_zeroE: "n < 0 \<Longrightarrow> R" for n :: nat by (rule notE) (rule not_less0)lemma less_Suc_eq: "m < Suc n \<longleftrightarrow> m < n \<or> m = n" unfolding less_Suc_eq_le le_less ..lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" by (simp add: less_Suc_eq)lemma less_one [iff]: "n < 1 \<longleftrightarrow> n = 0" for n :: nat unfolding One_nat_def by (rule less_Suc0)lemma Suc_mono: "m < n \<Longrightarrow> Suc m < Suc n" by simptext \<open>"Less than" is antisymmetric, sort of.\<close>lemma less_antisym: "\<not> n < m \<Longrightarrow> n < Suc m \<Longrightarrow> m = n" unfolding not_less less_Suc_eq_le by (rule antisym)lemma nat_neq_iff: "m \<noteq> n \<longleftrightarrow> m < n \<or> n < m" for m n :: nat by (rule linorder_neq_iff)subsubsection \<open>Inductive (?) properties\<close>lemma Suc_lessI: "m < n \<Longrightarrow> Suc m \<noteq> n \<Longrightarrow> Suc m < n" unfolding less_eq_Suc_le [of m] le_less by simplemma lessE: assumes major: "i < k" and 1: "k = Suc i \<Longrightarrow> P" and 2: "\<And>j. i < j \<Longrightarrow> k = Suc j \<Longrightarrow> P" shows Pproof - from major have "\<exists>j. i \<le> j \<and> k = Suc j" unfolding less_eq_Suc_le by (induct k) simp_all then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i" by (auto simp add: less_le) with 1 2 show P by autoqedlemma less_SucE: assumes major: "m < Suc n" and less: "m < n \<Longrightarrow> P" and eq: "m = n \<Longrightarrow> P" shows Pproof (rule major [THEN lessE]) show "Suc n = Suc m \<Longrightarrow> P" using eq by blast show "\<And>j. \<lbrakk>m < j; Suc n = Suc j\<rbrakk> \<Longrightarrow> P" by (blast intro: less)qedlemma Suc_lessE: assumes major: "Suc i < k" and minor: "\<And>j. i < j \<Longrightarrow> k = Suc j \<Longrightarrow> P" shows Pproof (rule major [THEN lessE]) show "k = Suc (Suc i) \<Longrightarrow> P" using lessI minor by iprover show "\<And>j. \<lbrakk>Suc i < j; k = Suc j\<rbrakk> \<Longrightarrow> P" using Suc_lessD minor by iproverqedlemma Suc_less_SucD: "Suc m < Suc n \<Longrightarrow> m < n" by simplemma less_trans_Suc: assumes le: "i < j" shows "j < k \<Longrightarrow> Suc i < k"proof (induct k) case 0 then show ?case by simpnext case (Suc k) with le show ?case by simp (auto simp add: less_Suc_eq dest: Suc_lessD)qedtext \<open>Can be used with \<open>less_Suc_eq\<close> to get \<^prop>\<open>n = m \<or> n < m\<close>.\<close>lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m" by (simp only: not_less less_Suc_eq_le)lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m" by (simp only: not_le Suc_le_eq)text \<open>Properties of "less than or equal".\<close>lemma le_imp_less_Suc: "m \<le> n \<Longrightarrow> m < Suc n" by (simp only: less_Suc_eq_le)lemma Suc_n_not_le_n: "\<not> Suc n \<le> n" by (simp add: not_le less_Suc_eq_le)lemma le_Suc_eq: "m \<le> Suc n \<longleftrightarrow> m \<le> n \<or> m = Suc n" by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq)lemma le_SucE: "m \<le> Suc n \<Longrightarrow> (m \<le> n \<Longrightarrow> R) \<Longrightarrow> (m = Suc n \<Longrightarrow> R) \<Longrightarrow> R" by (drule le_Suc_eq [THEN iffD1], iprover+)lemma Suc_leI: "m < n \<Longrightarrow> Suc m \<le> n" by (simp only: Suc_le_eq)text \<open>Stronger version of \<open>Suc_leD\<close>.\<close>lemma Suc_le_lessD: "Suc m \<le> n \<Longrightarrow> m < n" by (simp only: Suc_le_eq)lemma less_imp_le_nat: "m < n \<Longrightarrow> m \<le> n" for m n :: nat unfolding less_eq_Suc_le by (rule Suc_leD)text \<open>For instance, \<open>(Suc m < Suc n) = (Suc m \<le> n) = (m < n)\<close>\<close>lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eqtext \<open>Equivalence of \<open>m \<le> n\<close> and \<open>m < n \<or> m = n\<close>\<close>lemma less_or_eq_imp_le: "m < n \<or> m = n \<Longrightarrow> m \<le> n" for m n :: nat unfolding le_less .lemma le_eq_less_or_eq: "m \<le> n \<longleftrightarrow> m < n \<or> m = n" for m n :: nat by (rule le_less)text \<open>Useful with \<open>blast\<close>.\<close>lemma eq_imp_le: "m = n \<Longrightarrow> m \<le> n" for m n :: nat by autolemma le_refl: "n \<le> n" for n :: nat by simplemma le_trans: "i \<le> j \<Longrightarrow> j \<le> k \<Longrightarrow> i \<le> k" for i j k :: nat by (rule order_trans)lemma le_antisym: "m \<le> n \<Longrightarrow> n \<le> m \<Longrightarrow> m = n" for m n :: nat by (rule antisym)lemma nat_less_le: "m < n \<longleftrightarrow> m \<le> n \<and> m \<noteq> n" for m n :: nat by (rule less_le)lemma le_neq_implies_less: "m \<le> n \<Longrightarrow> m \<noteq> n \<Longrightarrow> m < n" for m n :: nat unfolding less_le ..lemma nat_le_linear: "m \<le> n \<or> n \<le> m" for m n :: nat by (rule linear)lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]lemma le_less_Suc_eq: "m \<le> n \<Longrightarrow> n < Suc m \<longleftrightarrow> n = m" unfolding less_Suc_eq_le by autolemma not_less_less_Suc_eq: "\<not> n < m \<Longrightarrow> n < Suc m \<longleftrightarrow> n = m" unfolding not_less by (rule le_less_Suc_eq)lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eqlemma not0_implies_Suc: "n \<noteq> 0 \<Longrightarrow> \<exists>m. n = Suc m" by (cases n) simp_alllemma gr0_implies_Suc: "n > 0 \<Longrightarrow> \<exists>m. n = Suc m" by (cases n) simp_alllemma gr_implies_not0: "m < n \<Longrightarrow> n \<noteq> 0" for m n :: nat by (cases n) simp_alllemma neq0_conv[iff]: "n \<noteq> 0 \<longleftrightarrow> 0 < n" for n :: nat by (cases n) simp_alltext \<open>This theorem is useful with \<open>blast\<close>\<close>lemma gr0I: "(n = 0 \<Longrightarrow> False) \<Longrightarrow> 0 < n" for n :: nat by (rule neq0_conv[THEN iffD1]) iproverlemma gr0_conv_Suc: "0 < n \<longleftrightarrow> (\<exists>m. n = Suc m)" by (fast intro: not0_implies_Suc)lemma not_gr0 [iff]: "\<not> 0 < n \<longleftrightarrow> n = 0" for n :: nat using neq0_conv by blastlemma Suc_le_D: "Suc n \<le> m' \<Longrightarrow> \<exists>m. m' = Suc m" by (induct m') simp_alltext \<open>Useful in certain inductive arguments\<close>lemma less_Suc_eq_0_disj: "m < Suc n \<longleftrightarrow> m = 0 \<or> (\<exists>j. m = Suc j \<and> j < n)" by (cases m) simp_alllemma All_less_Suc: "(\<forall>i < Suc n. P i) = (P n \<and> (\<forall>i < n. P i))" by (auto simp: less_Suc_eq)lemma All_less_Suc2: "(\<forall>i < Suc n. P i) = (P 0 \<and> (\<forall>i < n. P(Suc i)))" by (auto simp: less_Suc_eq_0_disj)lemma Ex_less_Suc: "(\<exists>i < Suc n. P i) = (P n \<or> (\<exists>i < n. P i))" by (auto simp: less_Suc_eq)lemma Ex_less_Suc2: "(\<exists>i < Suc n. P i) = (P 0 \<or> (\<exists>i < n. P(Suc i)))" by (auto simp: less_Suc_eq_0_disj)text \<open>@{term mono} (non-strict) doesn't imply increasing, as the function could be constant\<close>lemma strict_mono_imp_increasing: fixes n::nat assumes "strict_mono f" shows "f n \<ge> n"proof (induction n) case 0 then show ?case by autonext case (Suc n) then show ?case unfolding not_less_eq_eq [symmetric] using Suc_n_not_le_n assms order_trans strict_mono_less_eq by blastqedsubsubsection \<open>Monotonicity of Addition\<close>lemma Suc_pred [simp]: "n > 0 \<Longrightarrow> Suc (n - Suc 0) = n" by (simp add: diff_Suc split: nat.split)lemma Suc_diff_1 [simp]: "0 < n \<Longrightarrow> Suc (n - 1) = n" unfolding One_nat_def by (rule Suc_pred)lemma nat_add_left_cancel_le [simp]: "k + m \<le> k + n \<longleftrightarrow> m \<le> n" for k m n :: nat by (induct k) simp_alllemma nat_add_left_cancel_less [simp]: "k + m < k + n \<longleftrightarrow> m < n" for k m n :: nat by (induct k) simp_alllemma add_gr_0 [iff]: "m + n > 0 \<longleftrightarrow> m > 0 \<or> n > 0" for m n :: nat by (auto dest: gr0_implies_Suc)text \<open>strict, in 1st argument\<close>lemma add_less_mono1: "i < j \<Longrightarrow> i + k < j + k" for i j k :: nat by (induct k) simp_alltext \<open>strict, in both arguments\<close>lemma add_less_mono: fixes i j k l :: nat assumes "i < j" "k < l" shows "i + k < j + l"proof - have "i + k < j + k" by (simp add: add_less_mono1 assms) also have "... < j + l" using \<open>i < j\<close> by (induction j) (auto simp: assms) finally show ?thesis .qedlemma less_imp_Suc_add: "m < n \<Longrightarrow> \<exists>k. n = Suc (m + k)"proof (induct n) case 0 then show ?case by simpnext case Suc then show ?case by (simp add: order_le_less) (blast elim!: less_SucE intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric])qedlemma le_Suc_ex: "k \<le> l \<Longrightarrow> (\<exists>n. l = k + n)" for k l :: nat by (auto simp: less_Suc_eq_le[symmetric] dest: less_imp_Suc_add)lemma less_natE: assumes \<open>m < n\<close> obtains q where \<open>n = Suc (m + q)\<close> using assms by (auto dest: less_imp_Suc_add intro: that)text \<open>strict, in 1st argument; proof is by induction on \<open>k > 0\<close>\<close>lemma mult_less_mono2: fixes i j :: nat assumes "i < j" and "0 < k" shows "k * i < k * j" using \<open>0 < k\<close>proof (induct k) case 0 then show ?case by simpnext case (Suc k) with \<open>i < j\<close> show ?case by (cases k) (simp_all add: add_less_mono)qedtext \<open>Addition is the inverse of subtraction: if \<^term>\<open>n \<le> m\<close> then \<^term>\<open>n + (m - n) = m\<close>.\<close>lemma add_diff_inverse_nat: "\<not> m < n \<Longrightarrow> n + (m - n) = m" for m n :: nat by (induct m n rule: diff_induct) simp_alllemma nat_le_iff_add: "m \<le> n \<longleftrightarrow> (\<exists>k. n = m + k)" for m n :: nat using nat_add_left_cancel_le[of m 0] by (auto dest: le_Suc_ex)text \<open>The naturals form an ordered \<open>semidom\<close> and a \<open>dioid\<close>.\<close>instance nat :: linordered_semidomproof fix m n q :: nat show "0 < (1::nat)" by simp show "m \<le> n \<Longrightarrow> q + m \<le> q + n" by simp show "m < n \<Longrightarrow> 0 < q \<Longrightarrow> q * m < q * n" by (simp add: mult_less_mono2) show "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> m * n \<noteq> 0" by simp show "n \<le> m \<Longrightarrow> (m - n) + n = m" by (simp add: add_diff_inverse_nat add.commute linorder_not_less)qedinstance nat :: dioid by standard (rule nat_le_iff_add)declare le0[simp del] \<comment> \<open>This is now @{thm zero_le}\<close>declare le_0_eq[simp del] \<comment> \<open>This is now @{thm le_zero_eq}\<close>declare not_less0[simp del] \<comment> \<open>This is now @{thm not_less_zero}\<close>declare not_gr0[simp del] \<comment> \<open>This is now @{thm not_gr_zero}\<close>instance nat :: ordered_cancel_comm_monoid_add ..instance nat :: ordered_cancel_comm_monoid_diff ..subsubsection \<open>\<^term>\<open>min\<close> and \<^term>\<open>max\<close>\<close>global_interpretation bot_nat_0: ordering_top \<open>(\<ge>)\<close> \<open>(>)\<close> \<open>0::nat\<close> by standard simpglobal_interpretation max_nat: semilattice_neutr_order max \<open>0::nat\<close> \<open>(\<ge>)\<close> \<open>(>)\<close> by standard (simp add: max_def)lemma mono_Suc: "mono Suc" by (rule monoI) simplemma min_0L [simp]: "min 0 n = 0" for n :: nat by (rule min_absorb1) simplemma min_0R [simp]: "min n 0 = 0" for n :: nat by (rule min_absorb2) simplemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" by (simp add: mono_Suc min_of_mono)lemma min_Suc1: "min (Suc n) m = (case m of 0 \<Rightarrow> 0 | Suc m' \<Rightarrow> Suc(min n m'))" by (simp split: nat.split)lemma min_Suc2: "min m (Suc n) = (case m of 0 \<Rightarrow> 0 | Suc m' \<Rightarrow> Suc(min m' n))" by (simp split: nat.split)lemma max_0L [simp]: "max 0 n = n" for n :: nat by (fact max_nat.left_neutral)lemma max_0R [simp]: "max n 0 = n" for n :: nat by (fact max_nat.right_neutral)lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc (max m n)" by (simp add: mono_Suc max_of_mono)lemma max_Suc1: "max (Suc n) m = (case m of 0 \<Rightarrow> Suc n | Suc m' \<Rightarrow> Suc (max n m'))" by (simp split: nat.split)lemma max_Suc2: "max m (Suc n) = (case m of 0 \<Rightarrow> Suc n | Suc m' \<Rightarrow> Suc (max m' n))" by (simp split: nat.split)lemma nat_mult_min_left: "min m n * q = min (m * q) (n * q)" for m n q :: nat by (simp add: min_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans)lemma nat_mult_min_right: "m * min n q = min (m * n) (m * q)" for m n q :: nat by (simp add: min_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)lemma nat_add_max_left: "max m n + q = max (m + q) (n + q)" for m n q :: nat by (simp add: max_def)lemma nat_add_max_right: "m + max n q = max (m + n) (m + q)" for m n q :: nat by (simp add: max_def)lemma nat_mult_max_left: "max m n * q = max (m * q) (n * q)" for m n q :: nat by (simp add: max_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans)lemma nat_mult_max_right: "m * max n q = max (m * n) (m * q)" for m n q :: nat by (simp add: max_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)subsubsection \<open>Additional theorems about \<^term>\<open>(\<le>)\<close>\<close>text \<open>Complete induction, aka course-of-values induction\<close>instance nat :: wellorderproof fix P and n :: nat assume step: "(\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n" for n :: nat have "\<And>q. q \<le> n \<Longrightarrow> P q" proof (induct n) case (0 n) have "P 0" by (rule step) auto with 0 show ?case by auto next case (Suc m n) then have "n \<le> m \<or> n = Suc m" by (simp add: le_Suc_eq) then show ?case proof assume "n \<le> m" then show "P n" by (rule Suc(1)) next assume n: "n = Suc m" show "P n" by (rule step) (rule Suc(1), simp add: n le_simps) qed qed then show "P n" by autoqedlemma Least_eq_0[simp]: "P 0 \<Longrightarrow> Least P = 0" for P :: "nat \<Rightarrow> bool" by (rule Least_equality[OF _ le0])lemma Least_Suc: assumes "P n" "\<not> P 0" shows "(LEAST n. P n) = Suc (LEAST m. P (Suc m))"proof (cases n) case (Suc m) show ?thesis proof (rule antisym) show "(LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))" using assms Suc by (force intro: LeastI Least_le) have \<section>: "P (LEAST x. P x)" by (blast intro: LeastI assms) show "Suc (LEAST m. P (Suc m)) \<le> (LEAST n. P n)" proof (cases "(LEAST n. P n)") case 0 then show ?thesis using \<section> by (simp add: assms) next case Suc with \<section> show ?thesis by (auto simp: Least_le) qed qedqed (use assms in auto)lemma Least_Suc2: "P n \<Longrightarrow> Q m \<Longrightarrow> \<not> P 0 \<Longrightarrow> \<forall>k. P (Suc k) = Q k \<Longrightarrow> Least P = Suc (Least Q)" by (erule (1) Least_Suc [THEN ssubst]) simplemma ex_least_nat_le: fixes P :: "nat \<Rightarrow> bool" assumes "P n" "\<not> P 0" shows "\<exists>k\<le>n. (\<forall>i<k. \<not> P i) \<and> P k"proof (cases n) case (Suc m) with assms show ?thesis by (blast intro: Least_le LeastI_ex dest: not_less_Least)qed (use assms in auto)lemma ex_least_nat_less: fixes P :: "nat \<Rightarrow> bool" assumes "P n" "\<not> P 0" shows "\<exists>k<n. (\<forall>i\<le>k. \<not> P i) \<and> P (Suc k)"proof (cases n) case (Suc m) then obtain k where k: "k \<le> n" "\<forall>i<k. \<not> P i" "P k" using ex_least_nat_le [OF assms] by blast show ?thesis by (cases k) (use assms k less_eq_Suc_le in auto)qed (use assms in auto)lemma nat_less_induct: fixes P :: "nat \<Rightarrow> bool" assumes "\<And>n. \<forall>m. m < n \<longrightarrow> P m \<Longrightarrow> P n" shows "P n" using assms less_induct by blastlemma measure_induct_rule [case_names less]: fixes f :: "'a \<Rightarrow> 'b::wellorder" assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x" shows "P a" by (induct m \<equiv> "f a" arbitrary: a rule: less_induct) (auto intro: step)text \<open>old style induction rules:\<close>lemma measure_induct: fixes f :: "'a \<Rightarrow> 'b::wellorder" shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a" by (rule measure_induct_rule [of f P a]) iproverlemma full_nat_induct: assumes step: "\<And>n. (\<forall>m. Suc m \<le> n \<longrightarrow> P m) \<Longrightarrow> P n" shows "P n" by (rule less_induct) (auto intro: step simp:le_simps)text\<open>An induction rule for establishing binary relations\<close>lemma less_Suc_induct [consumes 1]: assumes less: "i < j" and step: "\<And>i. P i (Suc i)" and trans: "\<And>i j k. i < j \<Longrightarrow> j < k \<Longrightarrow> P i j \<Longrightarrow> P j k \<Longrightarrow> P i k" shows "P i j"proof - from less obtain k where j: "j = Suc (i + k)" by (auto dest: less_imp_Suc_add) have "P i (Suc (i + k))" proof (induct k) case 0 show ?case by (simp add: step) next case (Suc k) have "0 + i < Suc k + i" by (rule add_less_mono1) simp then have "i < Suc (i + k)" by (simp add: add.commute) from trans[OF this lessI Suc step] show ?case by simp qed then show "P i j" by (simp add: j)qedtext \<open> The method of infinite descent, frequently used in number theory. Provided by Roelof Oosterhuis. \<open>P n\<close> is true for all natural numbers if \<^item> case ``0'': given \<open>n = 0\<close> prove \<open>P n\<close> \<^item> case ``smaller'': given \<open>n > 0\<close> and \<open>\<not> P n\<close> prove there exists a smaller natural number \<open>m\<close> such that \<open>\<not> P m\<close>.\<close>lemma infinite_descent: "(\<And>n. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m) \<Longrightarrow> P n" for P :: "nat \<Rightarrow> bool" \<comment> \<open>compact version without explicit base case\<close> by (induct n rule: less_induct) autolemma infinite_descent0 [case_names 0 smaller]: fixes P :: "nat \<Rightarrow> bool" assumes "P 0" and "\<And>n. n > 0 \<Longrightarrow> \<not> P n \<Longrightarrow> \<exists>m. m < n \<and> \<not> P m" shows "P n"proof (rule infinite_descent) show "\<And>n. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m" using assms by (case_tac "n > 0") autoqedtext \<open> Infinite descent using a mapping to \<open>nat\<close>: \<open>P x\<close> is true for all \<open>x \<in> D\<close> if there exists a \<open>V \<in> D \<Rightarrow> nat\<close> and \<^item> case ``0'': given \<open>V x = 0\<close> prove \<open>P x\<close> \<^item> ``smaller'': given \<open>V x > 0\<close> and \<open>\<not> P x\<close> prove there exists a \<open>y \<in> D\<close> such that \<open>V y < V x\<close> and \<open>\<not> P y\<close>.\<close>corollary infinite_descent0_measure [case_names 0 smaller]: fixes V :: "'a \<Rightarrow> nat" assumes 1: "\<And>x. V x = 0 \<Longrightarrow> P x" and 2: "\<And>x. V x > 0 \<Longrightarrow> \<not> P x \<Longrightarrow> \<exists>y. V y < V x \<and> \<not> P y" shows "P x"proof - obtain n where "n = V x" by auto moreover have "\<And>x. V x = n \<Longrightarrow> P x" proof (induct n rule: infinite_descent0) case 0 with 1 show "P x" by auto next case (smaller n) then obtain x where *: "V x = n " and "V x > 0 \<and> \<not> P x" by auto with 2 obtain y where "V y < V x \<and> \<not> P y" by auto with * obtain m where "m = V y \<and> m < n \<and> \<not> P y" by auto then show ?case by auto qed ultimately show "P x" by autoqedtext \<open>Again, without explicit base case:\<close>lemma infinite_descent_measure: fixes V :: "'a \<Rightarrow> nat" assumes "\<And>x. \<not> P x \<Longrightarrow> \<exists>y. V y < V x \<and> \<not> P y" shows "P x"proof - from assms obtain n where "n = V x" by auto moreover have "\<And>x. V x = n \<Longrightarrow> P x" proof (induct n rule: infinite_descent, auto) show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" if "\<not> P x" for x using assms and that by auto qed ultimately show "P x" by autoqedtext \<open>A (clumsy) way of lifting \<open><\<close> monotonicity to \<open>\<le>\<close> monotonicity\<close>lemma less_mono_imp_le_mono: fixes f :: "nat \<Rightarrow> nat" and i j :: nat assumes "\<And>i j::nat. i < j \<Longrightarrow> f i < f j" and "i \<le> j" shows "f i \<le> f j" using assms by (auto simp add: order_le_less)text \<open>non-strict, in 1st argument\<close>lemma add_le_mono1: "i \<le> j \<Longrightarrow> i + k \<le> j + k" for i j k :: nat by (rule add_right_mono)text \<open>non-strict, in both arguments\<close>lemma add_le_mono: "i \<le> j \<Longrightarrow> k \<le> l \<Longrightarrow> i + k \<le> j + l" for i j k l :: nat by (rule add_mono)lemma le_add2: "n \<le> m + n" for m n :: nat by simplemma le_add1: "n \<le> n + m" for m n :: nat by simplemma less_add_Suc1: "i < Suc (i + m)" by (rule le_less_trans, rule le_add1, rule lessI)lemma less_add_Suc2: "i < Suc (m + i)" by (rule le_less_trans, rule le_add2, rule lessI)lemma less_iff_Suc_add: "m < n \<longleftrightarrow> (\<exists>k. n = Suc (m + k))" by (iprover intro!: less_add_Suc1 less_imp_Suc_add)lemma trans_le_add1: "i \<le> j \<Longrightarrow> i \<le> j + m" for i j m :: nat by (rule le_trans, assumption, rule le_add1)lemma trans_le_add2: "i \<le> j \<Longrightarrow> i \<le> m + j" for i j m :: nat by (rule le_trans, assumption, rule le_add2)lemma trans_less_add1: "i < j \<Longrightarrow> i < j + m" for i j m :: nat by (rule less_le_trans, assumption, rule le_add1)lemma trans_less_add2: "i < j \<Longrightarrow> i < m + j" for i j m :: nat by (rule less_le_trans, assumption, rule le_add2)lemma add_lessD1: "i + j < k \<Longrightarrow> i < k" for i j k :: nat by (rule le_less_trans [of _ "i+j"]) (simp_all add: le_add1)lemma not_add_less1 [iff]: "\<not> i + j < i" for i j :: nat by simplemma not_add_less2 [iff]: "\<not> j + i < i" for i j :: nat by simplemma add_leD1: "m + k \<le> n \<Longrightarrow> m \<le> n" for k m n :: nat by (rule order_trans [of _ "m + k"]) (simp_all add: le_add1)lemma add_leD2: "m + k \<le> n \<Longrightarrow> k \<le> n" for k m n :: nat by (force simp add: add.commute dest: add_leD1)lemma add_leE: "m + k \<le> n \<Longrightarrow> (m \<le> n \<Longrightarrow> k \<le> n \<Longrightarrow> R) \<Longrightarrow> R" for k m n :: nat by (blast dest: add_leD1 add_leD2)text \<open>needs \<open>\<And>k\<close> for \<open>ac_simps\<close> to work\<close>lemma less_add_eq_less: "\<And>k. k < l \<Longrightarrow> m + l = k + n \<Longrightarrow> m < n" for l m n :: nat by (force simp del: add_Suc_right simp add: less_iff_Suc_add add_Suc_right [symmetric] ac_simps)subsubsection \<open>More results about difference\<close>lemma Suc_diff_le: "n \<le> m \<Longrightarrow> Suc m - n = Suc (m - n)" by (induct m n rule: diff_induct) simp_alllemma diff_less_Suc: "m - n < Suc m" by (induct m n rule: diff_induct) (auto simp: less_Suc_eq)lemma diff_le_self [simp]: "m - n \<le> m" for m n :: nat by (induct m n rule: diff_induct) (simp_all add: le_SucI)lemma less_imp_diff_less: "j < k \<Longrightarrow> j - n < k" for j k n :: nat by (rule le_less_trans, rule diff_le_self)lemma diff_Suc_less [simp]: "0 < n \<Longrightarrow> n - Suc i < n" by (cases n) (auto simp add: le_simps)lemma diff_add_assoc: "k \<le> j \<Longrightarrow> (i + j) - k = i + (j - k)" for i j k :: nat by (fact ordered_cancel_comm_monoid_diff_class.diff_add_assoc) lemma add_diff_assoc [simp]: "k \<le> j \<Longrightarrow> i + (j - k) = i + j - k" for i j k :: nat by (fact ordered_cancel_comm_monoid_diff_class.add_diff_assoc)lemma diff_add_assoc2: "k \<le> j \<Longrightarrow> (j + i) - k = (j - k) + i" for i j k :: nat by (fact ordered_cancel_comm_monoid_diff_class.diff_add_assoc2)lemma add_diff_assoc2 [simp]: "k \<le> j \<Longrightarrow> j - k + i = j + i - k" for i j k :: nat by (fact ordered_cancel_comm_monoid_diff_class.add_diff_assoc2)lemma le_imp_diff_is_add: "i \<le> j \<Longrightarrow> (j - i = k) = (j = k + i)" for i j k :: nat by autolemma diff_is_0_eq [simp]: "m - n = 0 \<longleftrightarrow> m \<le> n" for m n :: nat by (induct m n rule: diff_induct) simp_alllemma diff_is_0_eq' [simp]: "m \<le> n \<Longrightarrow> m - n = 0" for m n :: nat by (rule iffD2, rule diff_is_0_eq)lemma zero_less_diff [simp]: "0 < n - m \<longleftrightarrow> m < n" for m n :: nat by (induct m n rule: diff_induct) simp_alllemma less_imp_add_positive: assumes "i < j" shows "\<exists>k::nat. 0 < k \<and> i + k = j"proof from assms show "0 < j - i \<and> i + (j - i) = j" by (simp add: order_less_imp_le)qedtext \<open>a nice rewrite for bounded subtraction\<close>lemma nat_minus_add_max: "n - m + m = max n m" for m n :: nat by (simp add: max_def not_le order_less_imp_le)lemma nat_diff_split: "P (a - b) \<longleftrightarrow> (a < b \<longrightarrow> P 0) \<and> (\<forall>d. a = b + d \<longrightarrow> P d)" for a b :: nat \<comment> \<open>elimination of \<open>-\<close> on \<open>nat\<close>\<close> by (cases "a < b") (auto simp add: not_less le_less dest!: add_eq_self_zero [OF sym])lemma nat_diff_split_asm: "P (a - b) \<longleftrightarrow> \<not> (a < b \<and> \<not> P 0 \<or> (\<exists>d. a = b + d \<and> \<not> P d))" for a b :: nat \<comment> \<open>elimination of \<open>-\<close> on \<open>nat\<close> in assumptions\<close> by (auto split: nat_diff_split)lemma Suc_pred': "0 < n \<Longrightarrow> n = Suc(n - 1)" by simplemma add_eq_if: "m + n = (if m = 0 then n else Suc ((m - 1) + n))" unfolding One_nat_def by (cases m) simp_alllemma mult_eq_if: "m * n = (if m = 0 then 0 else n + ((m - 1) * n))" for m n :: nat by (cases m) simp_alllemma Suc_diff_eq_diff_pred: "0 < n \<Longrightarrow> Suc m - n = m - (n - 1)" by (cases n) simp_alllemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n" by (cases m) simp_alllemma Let_Suc [simp]: "Let (Suc n) f \<equiv> f (Suc n)" by (fact Let_def)subsubsection \<open>Monotonicity of multiplication\<close>lemma mult_le_mono1: "i \<le> j \<Longrightarrow> i * k \<le> j * k" for i j k :: nat by (simp add: mult_right_mono)lemma mult_le_mono2: "i \<le> j \<Longrightarrow> k * i \<le> k * j" for i j k :: nat by (simp add: mult_left_mono)text \<open>\<open>\<le>\<close> monotonicity, BOTH arguments\<close>lemma mult_le_mono: "i \<le> j \<Longrightarrow> k \<le> l \<Longrightarrow> i * k \<le> j * l" for i j k l :: nat by (simp add: mult_mono)lemma mult_less_mono1: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> i * k < j * k" for i j k :: nat by (simp add: mult_strict_right_mono)text \<open>Differs from the standard \<open>zero_less_mult_iff\<close> in that there are no negative numbers.\<close>lemma nat_0_less_mult_iff [simp]: "0 < m * n \<longleftrightarrow> 0 < m \<and> 0 < n" for m n :: natproof (induct m) case 0 then show ?case by simpnext case (Suc m) then show ?case by (cases n) simp_allqedlemma one_le_mult_iff [simp]: "Suc 0 \<le> m * n \<longleftrightarrow> Suc 0 \<le> m \<and> Suc 0 \<le> n"proof (induct m) case 0 then show ?case by simpnext case (Suc m) then show ?case by (cases n) simp_allqedlemma mult_less_cancel2 [simp]: "m * k < n * k \<longleftrightarrow> 0 < k \<and> m < n" for k m n :: natproof (intro iffI conjI) assume m: "m * k < n * k" then show "0 < k" by (cases k) auto show "m < n" proof (cases k) case 0 then show ?thesis using m by auto next case (Suc k') then show ?thesis using m by (simp flip: linorder_not_le) (blast intro: add_mono mult_le_mono1) qednext assume "0 < k \<and> m < n" then show "m * k < n * k" by (blast intro: mult_less_mono1)qedlemma mult_less_cancel1 [simp]: "k * m < k * n \<longleftrightarrow> 0 < k \<and> m < n" for k m n :: nat by (simp add: mult.commute [of k])lemma mult_le_cancel1 [simp]: "k * m \<le> k * n \<longleftrightarrow> (0 < k \<longrightarrow> m \<le> n)" for k m n :: nat by (simp add: linorder_not_less [symmetric], auto)lemma mult_le_cancel2 [simp]: "m * k \<le> n * k \<longleftrightarrow> (0 < k \<longrightarrow> m \<le> n)" for k m n :: nat by (simp add: linorder_not_less [symmetric], auto)lemma Suc_mult_less_cancel1: "Suc k * m < Suc k * n \<longleftrightarrow> m < n" by (subst mult_less_cancel1) simplemma Suc_mult_le_cancel1: "Suc k * m \<le> Suc k * n \<longleftrightarrow> m \<le> n" by (subst mult_le_cancel1) simplemma le_square: "m \<le> m * m" for m :: nat by (cases m) (auto intro: le_add1)lemma le_cube: "m \<le> m * (m * m)" for m :: nat by (cases m) (auto intro: le_add1)text \<open>Lemma for \<open>gcd\<close>\<close>lemma mult_eq_self_implies_10: fixes m n :: nat assumes "m = m * n" shows "n = 1 \<or> m = 0"proof (rule disjCI) assume "m \<noteq> 0" show "n = 1" proof (cases n "1::nat" rule: linorder_cases) case greater show ?thesis using assms mult_less_mono2 [OF greater, of m] \<open>m \<noteq> 0\<close> by auto qed (use assms \<open>m \<noteq> 0\<close> in auto)qedlemma mono_times_nat: fixes n :: nat assumes "n > 0" shows "mono (times n)"proof fix m q :: nat assume "m \<le> q" with assms show "n * m \<le> n * q" by simpqedtext \<open>The lattice order on \<^typ>\<open>nat\<close>.\<close>instantiation nat :: distrib_latticebegindefinition "(inf :: nat \<Rightarrow> nat \<Rightarrow> nat) = min"definition "(sup :: nat \<Rightarrow> nat \<Rightarrow> nat) = max"instance by intro_classes (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def intro: order_less_imp_le antisym elim!: order_trans order_less_trans)endsubsection \<open>Natural operation of natural numbers on functions\<close>text \<open> We use the same logical constant for the power operations on functions and relations, in order to share the same syntax.\<close>consts compow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) where "f ^^ n \<equiv> compow n f"notation (latex output) compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)text \<open>\<open>f ^^ n = f \<circ> \<dots> \<circ> f\<close>, the \<open>n\<close>-fold composition of \<open>f\<close>\<close>overloading funpow \<equiv> "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"beginprimrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where "funpow 0 f = id" | "funpow (Suc n) f = f \<circ> funpow n f"endlemma funpow_0 [simp]: "(f ^^ 0) x = x" by simplemma funpow_Suc_right: "f ^^ Suc n = f ^^ n \<circ> f"proof (induct n) case 0 then show ?case by simpnext fix n assume "f ^^ Suc n = f ^^ n \<circ> f" then show "f ^^ Suc (Suc n) = f ^^ Suc n \<circ> f" by (simp add: o_assoc)qedlemmas funpow_simps_right = funpow.simps(1) funpow_Suc_righttext \<open>For code generation.\<close>definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where funpow_code_def [code_abbrev]: "funpow = compow"lemma [code]: "funpow (Suc n) f = f \<circ> funpow n f" "funpow 0 f = id" by (simp_all add: funpow_code_def)hide_const (open) funpowlemma funpow_add: "f ^^ (m + n) = f ^^ m \<circ> f ^^ n" by (induct m) simp_alllemma funpow_mult: "(f ^^ m) ^^ n = f ^^ (m * n)" for f :: "'a \<Rightarrow> 'a" by (induct n) (simp_all add: funpow_add)lemma funpow_swap1: "f ((f ^^ n) x) = (f ^^ n) (f x)"proof - have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp also have "\<dots> = (f ^^ n \<circ> f ^^ 1) x" by (simp only: funpow_add) also have "\<dots> = (f ^^ n) (f x)" by simp finally show ?thesis .qedlemma comp_funpow: "comp f ^^ n = comp (f ^^ n)" for f :: "'a \<Rightarrow> 'a" by (induct n) simp_alllemma Suc_funpow[simp]: "Suc ^^ n = ((+) n)" by (induct n) simp_alllemma id_funpow[simp]: "id ^^ n = id" by (induct n) simp_alllemma funpow_mono: "mono f \<Longrightarrow> A \<le> B \<Longrightarrow> (f ^^ n) A \<le> (f ^^ n) B" for f :: "'a \<Rightarrow> ('a::order)" by (induct n arbitrary: A B) (auto simp del: funpow.simps(2) simp add: funpow_Suc_right mono_def)lemma funpow_mono2: assumes "mono f" and "i \<le> j" and "x \<le> y" and "x \<le> f x" shows "(f ^^ i) x \<le> (f ^^ j) y" using assms(2,3)proof (induct j arbitrary: y) case 0 then show ?case by simpnext case (Suc j) show ?case proof(cases "i = Suc j") case True with assms(1) Suc show ?thesis by (simp del: funpow.simps add: funpow_simps_right monoD funpow_mono) next case False with assms(1,4) Suc show ?thesis by (simp del: funpow.simps add: funpow_simps_right le_eq_less_or_eq less_Suc_eq_le) (simp add: Suc.hyps monoD order_subst1) qedqedlemma inj_fn[simp]: fixes f::"'a \<Rightarrow> 'a" assumes "inj f" shows "inj (f^^n)"proof (induction n) case Suc thus ?case using inj_compose[OF assms Suc.IH] by (simp del: comp_apply)qed simplemma surj_fn[simp]: fixes f::"'a \<Rightarrow> 'a" assumes "surj f" shows "surj (f^^n)"proof (induction n) case Suc thus ?case by (simp add: comp_surj[OF Suc.IH assms] del: comp_apply)qed simplemma bij_fn[simp]: fixes f::"'a \<Rightarrow> 'a" assumes "bij f" shows "bij (f^^n)"by (rule bijI[OF inj_fn[OF bij_is_inj[OF assms]] surj_fn[OF bij_is_surj[OF assms]]])subsection \<open>Kleene iteration\<close>lemma Kleene_iter_lpfp: fixes f :: "'a::order_bot \<Rightarrow> 'a" assumes "mono f" and "f p \<le> p" shows "(f ^^ k) bot \<le> p"proof (induct k) case 0 show ?case by simpnext case Suc show ?case using monoD[OF assms(1) Suc] assms(2) by simpqedlemma lfp_Kleene_iter: assumes "mono f" and "(f ^^ Suc k) bot = (f ^^ k) bot" shows "lfp f = (f ^^ k) bot"proof (rule antisym) show "lfp f \<le> (f ^^ k) bot" proof (rule lfp_lowerbound) show "f ((f ^^ k) bot) \<le> (f ^^ k) bot" using assms(2) by simp qed show "(f ^^ k) bot \<le> lfp f" using Kleene_iter_lpfp[OF assms(1)] lfp_unfold[OF assms(1)] by simpqedlemma mono_pow: "mono f \<Longrightarrow> mono (f ^^ n)" for f :: "'a \<Rightarrow> 'a::complete_lattice" by (induct n) (auto simp: mono_def)lemma lfp_funpow: assumes f: "mono f" shows "lfp (f ^^ Suc n) = lfp f"proof (rule antisym) show "lfp f \<le> lfp (f ^^ Suc n)" proof (rule lfp_lowerbound) have "f (lfp (f ^^ Suc n)) = lfp (\<lambda>x. f ((f ^^ n) x))" unfolding funpow_Suc_right by (simp add: lfp_rolling f mono_pow comp_def) then show "f (lfp (f ^^ Suc n)) \<le> lfp (f ^^ Suc n)" by (simp add: comp_def) qed have "(f ^^ n) (lfp f) = lfp f" for n by (induct n) (auto intro: f lfp_fixpoint) then show "lfp (f ^^ Suc n) \<le> lfp f" by (intro lfp_lowerbound) (simp del: funpow.simps)qedlemma gfp_funpow: assumes f: "mono f" shows "gfp (f ^^ Suc n) = gfp f"proof (rule antisym) show "gfp f \<ge> gfp (f ^^ Suc n)" proof (rule gfp_upperbound) have "f (gfp (f ^^ Suc n)) = gfp (\<lambda>x. f ((f ^^ n) x))" unfolding funpow_Suc_right by (simp add: gfp_rolling f mono_pow comp_def) then show "f (gfp (f ^^ Suc n)) \<ge> gfp (f ^^ Suc n)" by (simp add: comp_def) qed have "(f ^^ n) (gfp f) = gfp f" for n by (induct n) (auto intro: f gfp_fixpoint) then show "gfp (f ^^ Suc n) \<ge> gfp f" by (intro gfp_upperbound) (simp del: funpow.simps)qedlemma Kleene_iter_gpfp: fixes f :: "'a::order_top \<Rightarrow> 'a" assumes "mono f" and "p \<le> f p" shows "p \<le> (f ^^ k) top"proof (induct k) case 0 show ?case by simpnext case Suc show ?case using monoD[OF assms(1) Suc] assms(2) by simpqedlemma gfp_Kleene_iter: assumes "mono f" and "(f ^^ Suc k) top = (f ^^ k) top" shows "gfp f = (f ^^ k) top" (is "?lhs = ?rhs")proof (rule antisym) have "?rhs \<le> f ?rhs" using assms(2) by simp then show "?rhs \<le> ?lhs" by (rule gfp_upperbound) show "?lhs \<le> ?rhs" using Kleene_iter_gpfp[OF assms(1)] gfp_unfold[OF assms(1)] by simpqedsubsection \<open>Embedding of the naturals into any \<open>semiring_1\<close>: \<^term>\<open>of_nat\<close>\<close>context semiring_1begindefinition of_nat :: "nat \<Rightarrow> 'a" where "of_nat n = (plus 1 ^^ n) 0"lemma of_nat_simps [simp]: shows of_nat_0: "of_nat 0 = 0" and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m" by (simp_all add: of_nat_def)lemma of_nat_1 [simp]: "of_nat 1 = 1" by (simp add: of_nat_def)lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n" by (induct m) (simp_all add: ac_simps)lemma of_nat_mult [simp]: "of_nat (m * n) = of_nat m * of_nat n" by (induct m) (simp_all add: ac_simps distrib_right)lemma mult_of_nat_commute: "of_nat x * y = y * of_nat x" by (induct x) (simp_all add: algebra_simps)primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" where "of_nat_aux inc 0 i = i" | "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" \<comment> \<open>tail recursive\<close>lemma of_nat_code: "of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0"proof (induct n) case 0 then show ?case by simpnext case (Suc n) have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1" by (induct n) simp_all from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1" by simp with Suc show ?case by (simp add: add.commute)qedlemma of_nat_of_bool [simp]: "of_nat (of_bool P) = of_bool P" by autoenddeclare of_nat_code [code]context semiring_1_cancelbeginlemma of_nat_diff: \<open>of_nat (m - n) = of_nat m - of_nat n\<close> if \<open>n \<le> m\<close>proof - from that obtain q where \<open>m = n + q\<close> by (blast dest: le_Suc_ex) then show ?thesis by simpqedendtext \<open>Class for unital semirings with characteristic zero. Includes non-ordered rings like the complex numbers.\<close>class semiring_char_0 = semiring_1 + assumes inj_of_nat: "inj of_nat"beginlemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n" by (auto intro: inj_of_nat injD)text \<open>Special cases where either operand is zero\<close>lemma of_nat_0_eq_iff [simp]: "0 = of_nat n \<longleftrightarrow> 0 = n" by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0])lemma of_nat_eq_0_iff [simp]: "of_nat m = 0 \<longleftrightarrow> m = 0" by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0])lemma of_nat_1_eq_iff [simp]: "1 = of_nat n \<longleftrightarrow> n=1" using of_nat_eq_iff by fastforcelemma of_nat_eq_1_iff [simp]: "of_nat n = 1 \<longleftrightarrow> n=1" using of_nat_eq_iff by fastforcelemma of_nat_neq_0 [simp]: "of_nat (Suc n) \<noteq> 0" unfolding of_nat_eq_0_iff by simplemma of_nat_0_neq [simp]: "0 \<noteq> of_nat (Suc n)" unfolding of_nat_0_eq_iff by simpendclass ring_char_0 = ring_1 + semiring_char_0context linordered_nonzero_semiringbeginlemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n" by (induct n) simp_alllemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0" by (simp add: not_less)lemma of_nat_mono[simp]: "i \<le> j \<Longrightarrow> of_nat i \<le> of_nat j" by (auto simp: le_iff_add intro!: add_increasing2)lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n"proof(induct m n rule: diff_induct) case (1 m) then show ?case by autonext case (2 n) then show ?case by (simp add: add_pos_nonneg)next case (3 m n) then show ?case by (auto simp: add_commute [of 1] add_mono1 not_less add_right_mono leD)qedlemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n" by (simp add: not_less [symmetric] linorder_not_less [symmetric])lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n" by simplemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n" by simptext \<open>Every \<open>linordered_nonzero_semiring\<close> has characteristic zero.\<close>subclass semiring_char_0 by standard (auto intro!: injI simp add: eq_iff)text \<open>Special cases where either operand is zero\<close>lemma of_nat_le_0_iff [simp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0" by (rule of_nat_le_iff [of _ 0, simplified])lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n" by (rule of_nat_less_iff [of 0, simplified])endcontext linordered_nonzero_semiringbeginlemma of_nat_max: "of_nat (max x y) = max (of_nat x) (of_nat y)" by (auto simp: max_def ord_class.max_def)lemma of_nat_min: "of_nat (min x y) = min (of_nat x) (of_nat y)" by (auto simp: min_def ord_class.min_def)endcontext linordered_semidombeginsubclass linordered_nonzero_semiring ..subclass semiring_char_0 ..endcontext linordered_idombeginlemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n" by (simp add: abs_if)lemma sgn_of_nat [simp]: "sgn (of_nat n) = of_bool (n > 0)" by simpendlemma of_nat_id [simp]: "of_nat n = n" by (induct n) simp_alllemma of_nat_eq_id [simp]: "of_nat = id" by (auto simp add: fun_eq_iff)subsection \<open>The set of natural numbers\<close>context semiring_1begindefinition Nats :: "'a set" ("\<nat>") where "\<nat> = range of_nat"lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>" by (simp add: Nats_def)lemma Nats_0 [simp]: "0 \<in> \<nat>" using of_nat_0 [symmetric] unfolding Nats_def by (rule range_eqI)lemma Nats_1 [simp]: "1 \<in> \<nat>" using of_nat_1 [symmetric] unfolding Nats_def by (rule range_eqI)lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>" unfolding Nats_def using of_nat_add [symmetric] by (blast intro: range_eqI)lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>" unfolding Nats_def using of_nat_mult [symmetric] by (blast intro: range_eqI)lemma Nats_cases [cases set: Nats]: assumes "x \<in> \<nat>" obtains (of_nat) n where "x = of_nat n" unfolding Nats_defproof - from \<open>x \<in> \<nat>\<close> have "x \<in> range of_nat" unfolding Nats_def . then obtain n where "x = of_nat n" .. then show thesis ..qedlemma Nats_induct [case_names of_nat, induct set: Nats]: "x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x" by (rule Nats_cases) autoendlemma Nats_diff [simp]: fixes a:: "'a::linordered_idom" assumes "a \<in> \<nat>" "b \<in> \<nat>" "b \<le> a" shows "a - b \<in> \<nat>"proof - obtain i where i: "a = of_nat i" using Nats_cases assms by blast obtain j where j: "b = of_nat j" using Nats_cases assms by blast have "j \<le> i" using \<open>b \<le> a\<close> i j of_nat_le_iff by blast then have *: "of_nat i - of_nat j = (of_nat (i-j) :: 'a)" by (simp add: of_nat_diff) then show ?thesis by (simp add: * i j)qedsubsection \<open>Further arithmetic facts concerning the natural numbers\<close>lemma subst_equals: assumes "t = s" and "u = t" shows "u = s" using assms(2,1) by (rule trans)locale nat_arithbeginlemma add1: "(A::'a::comm_monoid_add) \<equiv> k + a \<Longrightarrow> A + b \<equiv> k + (a + b)" by (simp only: ac_simps)lemma add2: "(B::'a::comm_monoid_add) \<equiv> k + b \<Longrightarrow> a + B \<equiv> k + (a + b)" by (simp only: ac_simps)lemma suc1: "A == k + a \<Longrightarrow> Suc A \<equiv> k + Suc a" by (simp only: add_Suc_right)lemma rule0: "(a::'a::comm_monoid_add) \<equiv> a + 0" by (simp only: add_0_right)endML_file \<open>Tools/nat_arith.ML\<close>simproc_setup nateq_cancel_sums ("(l::nat) + m = n" | "(l::nat) = m + n" | "Suc m = n" | "m = Suc n") = \<open>fn phi => try o Nat_Arith.cancel_eq_conv\<close>simproc_setup natless_cancel_sums ("(l::nat) + m < n" | "(l::nat) < m + n" | "Suc m < n" | "m < Suc n") = \<open>fn phi => try o Nat_Arith.cancel_less_conv\<close>simproc_setup natle_cancel_sums ("(l::nat) + m \<le> n" | "(l::nat) \<le> m + n" | "Suc m \<le> n" | "m \<le> Suc n") = \<open>fn phi => try o Nat_Arith.cancel_le_conv\<close>simproc_setup natdiff_cancel_sums ("(l::nat) + m - n" | "(l::nat) - (m + n)" | "Suc m - n" | "m - Suc n") = \<open>fn phi => try o Nat_Arith.cancel_diff_conv\<close>context orderbeginlemma lift_Suc_mono_le: assumes mono: "\<And>n. f n \<le> f (Suc n)" and "n \<le> n'" shows "f n \<le> f n'"proof (cases "n < n'") case True then show ?thesis by (induct n n' rule: less_Suc_induct) (auto intro: mono)next case False with \<open>n \<le> n'\<close> show ?thesis by autoqedlemma lift_Suc_antimono_le: assumes mono: "\<And>n. f n \<ge> f (Suc n)" and "n \<le> n'" shows "f n \<ge> f n'"proof (cases "n < n'") case True then show ?thesis by (induct n n' rule: less_Suc_induct) (auto intro: mono)next case False with \<open>n \<le> n'\<close> show ?thesis by autoqedlemma lift_Suc_mono_less: assumes mono: "\<And>n. f n < f (Suc n)" and "n < n'" shows "f n < f n'" using \<open>n < n'\<close> by (induct n n' rule: less_Suc_induct) (auto intro: mono)lemma lift_Suc_mono_less_iff: "(\<And>n. f n < f (Suc n)) \<Longrightarrow> f n < f m \<longleftrightarrow> n < m" by (blast intro: less_asym' lift_Suc_mono_less [of f] dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq [THEN iffD1])endlemma mono_iff_le_Suc: "mono f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))" unfolding mono_def by (auto intro: lift_Suc_mono_le [of f])lemma antimono_iff_le_Suc: "antimono f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)" unfolding antimono_def by (auto intro: lift_Suc_antimono_le [of f])lemma mono_nat_linear_lb: fixes f :: "nat \<Rightarrow> nat" assumes "\<And>m n. m < n \<Longrightarrow> f m < f n" shows "f m + k \<le> f (m + k)"proof (induct k) case 0 then show ?case by simpnext case (Suc k) then have "Suc (f m + k) \<le> Suc (f (m + k))" by simp also from assms [of "m + k" "Suc (m + k)"] have "Suc (f (m + k)) \<le> f (Suc (m + k))" by (simp add: Suc_le_eq) finally show ?case by simpqedtext \<open>Subtraction laws, mostly by Clemens Ballarin\<close>lemma diff_less_mono: fixes a b c :: nat assumes "a < b" and "c \<le> a" shows "a - c < b - c"proof - from assms obtain d e where "b = c + (d + e)" and "a = c + e" and "d > 0" by (auto dest!: le_Suc_ex less_imp_Suc_add simp add: ac_simps) then show ?thesis by simpqedlemma less_diff_conv: "i < j - k \<longleftrightarrow> i + k < j" for i j k :: nat by (cases "k \<le> j") (auto simp add: not_le dest: less_imp_Suc_add le_Suc_ex)lemma less_diff_conv2: "k \<le> j \<Longrightarrow> j - k < i \<longleftrightarrow> j < i + k" for j k i :: nat by (auto dest: le_Suc_ex)lemma le_diff_conv: "j - k \<le> i \<longleftrightarrow> j \<le> i + k" for j k i :: nat by (cases "k \<le> j") (auto simp add: not_le dest!: less_imp_Suc_add le_Suc_ex)lemma diff_diff_cancel [simp]: "i \<le> n \<Longrightarrow> n - (n - i) = i" for i n :: nat by (auto dest: le_Suc_ex)lemma diff_less [simp]: "0 < n \<Longrightarrow> 0 < m \<Longrightarrow> m - n < m" for i n :: nat by (auto dest: less_imp_Suc_add)text \<open>Simplification of relational expressions involving subtraction\<close>lemma diff_diff_eq: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k - (n - k) = m - n" for m n k :: nat by (auto dest!: le_Suc_ex)hide_fact (open) diff_diff_eqlemma eq_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k = n - k \<longleftrightarrow> m = n" for m n k :: nat by (auto dest: le_Suc_ex)lemma less_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k < n - k \<longleftrightarrow> m < n" for m n k :: nat by (auto dest!: le_Suc_ex)lemma le_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k \<le> n - k \<longleftrightarrow> m \<le> n" for m n k :: nat by (auto dest!: le_Suc_ex)lemma le_diff_iff': "a \<le> c \<Longrightarrow> b \<le> c \<Longrightarrow> c - a \<le> c - b \<longleftrightarrow> b \<le> a" for a b c :: nat by (force dest: le_Suc_ex)text \<open>(Anti)Monotonicity of subtraction -- by Stephan Merz\<close>lemma diff_le_mono: "m \<le> n \<Longrightarrow> m - l \<le> n - l" for m n l :: nat by (auto dest: less_imp_le less_imp_Suc_add split: nat_diff_split)lemma diff_le_mono2: "m \<le> n \<Longrightarrow> l - n \<le> l - m" for m n l :: nat by (auto dest: less_imp_le le_Suc_ex less_imp_Suc_add less_le_trans split: nat_diff_split)lemma diff_less_mono2: "m < n \<Longrightarrow> m < l \<Longrightarrow> l - n < l - m" for m n l :: nat by (auto dest: less_imp_Suc_add split: nat_diff_split)lemma diffs0_imp_equal: "m - n = 0 \<Longrightarrow> n - m = 0 \<Longrightarrow> m = n" for m n :: nat by (simp split: nat_diff_split)lemma min_diff: "min (m - i) (n - i) = min m n - i" for m n i :: nat by (cases m n rule: le_cases) (auto simp add: not_le min.absorb1 min.absorb2 min.absorb_iff1 [symmetric] diff_le_mono)lemma inj_on_diff_nat: fixes k :: nat assumes "\<And>n. n \<in> N \<Longrightarrow> k \<le> n" shows "inj_on (\<lambda>n. n - k) N"proof (rule inj_onI) fix x y assume a: "x \<in> N" "y \<in> N" "x - k = y - k" with assms have "x - k + k = y - k + k" by auto with a assms show "x = y" by (auto simp add: eq_diff_iff)qedtext \<open>Rewriting to pull differences out\<close>lemma diff_diff_right [simp]: "k \<le> j \<Longrightarrow> i - (j - k) = i + k - j" for i j k :: nat by (fact diff_diff_right)lemma diff_Suc_diff_eq1 [simp]: assumes "k \<le> j" shows "i - Suc (j - k) = i + k - Suc j"proof - from assms have *: "Suc (j - k) = Suc j - k" by (simp add: Suc_diff_le) from assms have "k \<le> Suc j" by (rule order_trans) simp with diff_diff_right [of k "Suc j" i] * show ?thesis by simpqedlemma diff_Suc_diff_eq2 [simp]: assumes "k \<le> j" shows "Suc (j - k) - i = Suc j - (k + i)"proof - from assms obtain n where "j = k + n" by (auto dest: le_Suc_ex) moreover have "Suc n - i = (k + Suc n) - (k + i)" using add_diff_cancel_left [of k "Suc n" i] by simp ultimately show ?thesis by simpqedlemma Suc_diff_Suc: assumes "n < m" shows "Suc (m - Suc n) = m - n"proof - from assms obtain q where "m = n + Suc q" by (auto dest: less_imp_Suc_add) moreover define r where "r = Suc q" ultimately have "Suc (m - Suc n) = r" and "m = n + r" by simp_all then show ?thesis by simpqedlemma one_less_mult: "Suc 0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> Suc 0 < m * n" using less_1_mult [of n m] by (simp add: ac_simps)lemma n_less_m_mult_n: "0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> n < m * n" using mult_strict_right_mono [of 1 m n] by simplemma n_less_n_mult_m: "0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> n < n * m" using mult_strict_left_mono [of 1 m n] by simptext \<open>Induction starting beyond zero\<close>lemma nat_induct_at_least [consumes 1, case_names base Suc]: "P n" if "n \<ge> m" "P m" "\<And>n. n \<ge> m \<Longrightarrow> P n \<Longrightarrow> P (Suc n)"proof - define q where "q = n - m" with \<open>n \<ge> m\<close> have "n = m + q" by simp moreover have "P (m + q)" by (induction q) (use that in simp_all) ultimately show "P n" by simpqedlemma nat_induct_non_zero [consumes 1, case_names 1 Suc]: "P n" if "n > 0" "P 1" "\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)"proof - from \<open>n > 0\<close> have "n \<ge> 1" by (cases n) simp_all moreover note \<open>P 1\<close> moreover have "\<And>n. n \<ge> 1 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)" using \<open>\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)\<close> by (simp add: Suc_le_eq) ultimately show "P n" by (rule nat_induct_at_least)qedtext \<open>Specialized induction principles that work "backwards":\<close>lemma inc_induct [consumes 1, case_names base step]: assumes less: "i \<le> j" and base: "P j" and step: "\<And>n. i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P (Suc n) \<Longrightarrow> P n" shows "P i" using less stepproof (induct "j - i" arbitrary: i) case (0 i) then have "i = j" by simp with base show ?case by simpnext case (Suc d n) from Suc.hyps have "n \<noteq> j" by auto with Suc have "n < j" by (simp add: less_le) from \<open>Suc d = j - n\<close> have "d + 1 = j - n" by simp then have "d + 1 - 1 = j - n - 1" by simp then have "d = j - n - 1" by simp then have "d = j - (n + 1)" by (simp add: diff_diff_eq) then have "d = j - Suc n" by simp moreover from \<open>n < j\<close> have "Suc n \<le> j" by (simp add: Suc_le_eq) ultimately have "P (Suc n)" proof (rule Suc.hyps) fix q assume "Suc n \<le> q" then have "n \<le> q" by (simp add: Suc_le_eq less_imp_le) moreover assume "q < j" moreover assume "P (Suc q)" ultimately show "P q" by (rule Suc.prems) qed with order_refl \<open>n < j\<close> show "P n" by (rule Suc.prems)qedlemma strict_inc_induct [consumes 1, case_names base step]: assumes less: "i < j" and base: "\<And>i. j = Suc i \<Longrightarrow> P i" and step: "\<And>i. i < j \<Longrightarrow> P (Suc i) \<Longrightarrow> P i" shows "P i"using less proof (induct "j - i - 1" arbitrary: i) case (0 i) from \<open>i < j\<close> obtain n where "j = i + n" and "n > 0" by (auto dest!: less_imp_Suc_add) with 0 have "j = Suc i" by (auto intro: order_antisym simp add: Suc_le_eq) with base show ?case by simpnext case (Suc d i) from \<open>Suc d = j - i - 1\<close> have *: "Suc d = j - Suc i" by (simp add: diff_diff_add) then have "Suc d - 1 = j - Suc i - 1" by simp then have "d = j - Suc i - 1" by simp moreover from * have "j - Suc i \<noteq> 0" by auto then have "Suc i < j" by (simp add: not_le) ultimately have "P (Suc i)" by (rule Suc.hyps) with \<open>i < j\<close> show "P i" by (rule step)qedlemma zero_induct_lemma: "P k \<Longrightarrow> (\<And>n. P (Suc n) \<Longrightarrow> P n) \<Longrightarrow> P (k - i)" using inc_induct[of "k - i" k P, simplified] by blastlemma zero_induct: "P k \<Longrightarrow> (\<And>n. P (Suc n) \<Longrightarrow> P n) \<Longrightarrow> P 0" using inc_induct[of 0 k P] by blasttext \<open>Further induction rule similar to @{thm inc_induct}.\<close>lemma dec_induct [consumes 1, case_names base step]: "i \<le> j \<Longrightarrow> P i \<Longrightarrow> (\<And>n. i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P n \<Longrightarrow> P (Suc n)) \<Longrightarrow> P j"proof (induct j arbitrary: i) case 0 then show ?case by simpnext case (Suc j) from Suc.prems consider "i \<le> j" | "i = Suc j" by (auto simp add: le_Suc_eq) then show ?case proof cases case 1 moreover have "j < Suc j" by simp moreover have "P j" using \<open>i \<le> j\<close> \<open>P i\<close> proof (rule Suc.hyps) fix q assume "i \<le> q" moreover assume "q < j" then have "q < Suc j" by (simp add: less_Suc_eq) moreover assume "P q" ultimately show "P (Suc q)" by (rule Suc.prems) qed ultimately show "P (Suc j)" by (rule Suc.prems) next case 2 with \<open>P i\<close> show "P (Suc j)" by simp qedqedlemma transitive_stepwise_le: assumes "m \<le> n" "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" and "\<And>n. R n (Suc n)" shows "R m n"using \<open>m \<le> n\<close> by (induction rule: dec_induct) (use assms in blast)+subsubsection \<open>Greatest operator\<close>lemma ex_has_greatest_nat: "P (k::nat) \<Longrightarrow> \<forall>y. P y \<longrightarrow> y \<le> b \<Longrightarrow> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> y \<le> x)"proof (induction "b-k" arbitrary: b k rule: less_induct) case less show ?case proof cases assume "\<exists>n>k. P n" then obtain n where "n>k" "P n" by blast have "n \<le> b" using \<open>P n\<close> less.prems(2) by auto hence "b-n < b-k" by(rule diff_less_mono2[OF \<open>k<n\<close> less_le_trans[OF \<open>k<n\<close>]]) from less.hyps[OF this \<open>P n\<close> less.prems(2)] show ?thesis . next assume "\<not> (\<exists>n>k. P n)" hence "\<forall>y. P y \<longrightarrow> y \<le> k" by (auto simp: not_less) thus ?thesis using less.prems(1) by auto qedqedlemma fixes k::nat assumes "P k" and minor: "\<And>y. P y \<Longrightarrow> y \<le> b" shows GreatestI_nat: "P (Greatest P)" and Greatest_le_nat: "k \<le> Greatest P"proof - obtain x where "P x" "\<And>y. P y \<Longrightarrow> y \<le> x" using assms ex_has_greatest_nat by blast with \<open>P k\<close> show "P (Greatest P)" "k \<le> Greatest P" using GreatestI2_order by blast+qedlemma GreatestI_ex_nat: "\<lbrakk> \<exists>k::nat. P k; \<And>y. P y \<Longrightarrow> y \<le> b \<rbrakk> \<Longrightarrow> P (Greatest P)" by (blast intro: GreatestI_nat)subsection \<open>Monotonicity of \<open>funpow\<close>\<close>lemma funpow_increasing: "m \<le> n \<Longrightarrow> mono f \<Longrightarrow> (f ^^ n) \<top> \<le> (f ^^ m) \<top>" for f :: "'a::{lattice,order_top} \<Rightarrow> 'a" by (induct rule: inc_induct) (auto simp del: funpow.simps(2) simp add: funpow_Suc_right intro: order_trans[OF _ funpow_mono])lemma funpow_decreasing: "m \<le> n \<Longrightarrow> mono f \<Longrightarrow> (f ^^ m) \<bottom> \<le> (f ^^ n) \<bottom>" for f :: "'a::{lattice,order_bot} \<Rightarrow> 'a" by (induct rule: dec_induct) (auto simp del: funpow.simps(2) simp add: funpow_Suc_right intro: order_trans[OF _ funpow_mono])lemma mono_funpow: "mono Q \<Longrightarrow> mono (\<lambda>i. (Q ^^ i) \<bottom>)" for Q :: "'a::{lattice,order_bot} \<Rightarrow> 'a" by (auto intro!: funpow_decreasing simp: mono_def)lemma antimono_funpow: "mono Q \<Longrightarrow> antimono (\<lambda>i. (Q ^^ i) \<top>)" for Q :: "'a::{lattice,order_top} \<Rightarrow> 'a" by (auto intro!: funpow_increasing simp: antimono_def)subsection \<open>The divides relation on \<^typ>\<open>nat\<close>\<close>lemma dvd_1_left [iff]: "Suc 0 dvd k" by (simp add: dvd_def)lemma dvd_1_iff_1 [simp]: "m dvd Suc 0 \<longleftrightarrow> m = Suc 0" by (simp add: dvd_def)lemma nat_dvd_1_iff_1 [simp]: "m dvd 1 \<longleftrightarrow> m = 1" for m :: nat by (simp add: dvd_def)lemma dvd_antisym: "m dvd n \<Longrightarrow> n dvd m \<Longrightarrow> m = n" for m n :: nat unfolding dvd_def by (force dest: mult_eq_self_implies_10 simp add: mult.assoc)lemma dvd_diff_nat [simp]: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m - n)" for k m n :: nat unfolding dvd_def by (blast intro: right_diff_distrib' [symmetric])lemma dvd_diffD: fixes k m n :: nat assumes "k dvd m - n" "k dvd n" "n \<le> m" shows "k dvd m"proof - have "k dvd n + (m - n)" using assms by (blast intro: dvd_add) with assms show ?thesis by simpqedlemma dvd_diffD1: "k dvd m - n \<Longrightarrow> k dvd m \<Longrightarrow> n \<le> m \<Longrightarrow> k dvd n" for k m n :: nat by (drule_tac m = m in dvd_diff_nat) autolemma dvd_mult_cancel: fixes m n k :: nat assumes "k * m dvd k * n" and "0 < k" shows "m dvd n"proof - from assms(1) obtain q where "k * n = (k * m) * q" .. then have "k * n = k * (m * q)" by (simp add: ac_simps) with \<open>0 < k\<close> have "n = m * q" by (auto simp add: mult_left_cancel) then show ?thesis ..qedlemma dvd_mult_cancel1: fixes m n :: nat assumes "0 < m" shows "m * n dvd m \<longleftrightarrow> n = 1"proof assume "m * n dvd m" then have "m * n dvd m * 1" by simp then have "n dvd 1" by (iprover intro: assms dvd_mult_cancel) then show "n = 1" by autoqed autolemma dvd_mult_cancel2: "0 < m \<Longrightarrow> n * m dvd m \<longleftrightarrow> n = 1" for m n :: nat using dvd_mult_cancel1 [of m n] by (simp add: ac_simps)lemma dvd_imp_le: "k dvd n \<Longrightarrow> 0 < n \<Longrightarrow> k \<le> n" for k n :: nat by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)lemma nat_dvd_not_less: "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m" for m n :: nat by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)lemma less_eq_dvd_minus: fixes m n :: nat assumes "m \<le> n" shows "m dvd n \<longleftrightarrow> m dvd n - m"proof - from assms have "n = m + (n - m)" by simp then obtain q where "n = m + q" .. then show ?thesis by (simp add: add.commute [of m])qedlemma dvd_minus_self: "m dvd n - m \<longleftrightarrow> n < m \<or> m dvd n" for m n :: nat by (cases "n < m") (auto elim!: dvdE simp add: not_less le_imp_diff_is_add dest: less_imp_le)lemma dvd_minus_add: fixes m n q r :: nat assumes "q \<le> n" "q \<le> r * m" shows "m dvd n - q \<longleftrightarrow> m dvd n + (r * m - q)"proof - have "m dvd n - q \<longleftrightarrow> m dvd r * m + (n - q)" using dvd_add_times_triv_left_iff [of m r] by simp also from assms have "\<dots> \<longleftrightarrow> m dvd r * m + n - q" by simp also from assms have "\<dots> \<longleftrightarrow> m dvd (r * m - q) + n" by simp also have "\<dots> \<longleftrightarrow> m dvd n + (r * m - q)" by (simp add: add.commute) finally show ?thesis .qedsubsection \<open>Aliasses\<close>lemma nat_mult_1: "1 * n = n" for n :: nat by (fact mult_1_left)lemma nat_mult_1_right: "n * 1 = n" for n :: nat by (fact mult_1_right)lemma diff_mult_distrib: "(m - n) * k = (m * k) - (n * k)" for k m n :: nat by (fact left_diff_distrib')lemma diff_mult_distrib2: "k * (m - n) = (k * m) - (k * n)" for k m n :: nat by (fact right_diff_distrib')(*Used in AUTO2 and Groups.le_diff_conv2 (with variables renamed) doesn't work for some reason*)lemma le_diff_conv2: "k \<le> j \<Longrightarrow> (i \<le> j - k) = (i + k \<le> j)" for i j k :: nat by (fact le_diff_conv2) lemma diff_self_eq_0 [simp]: "m - m = 0" for m :: nat by (fact diff_cancel)lemma diff_diff_left [simp]: "i - j - k = i - (j + k)" for i j k :: nat by (fact diff_diff_add)lemma diff_commute: "i - j - k = i - k - j" for i j k :: nat by (fact diff_right_commute)lemma diff_add_inverse: "(n + m) - n = m" for m n :: nat by (fact add_diff_cancel_left')lemma diff_add_inverse2: "(m + n) - n = m" for m n :: nat by (fact add_diff_cancel_right')lemma diff_cancel: "(k + m) - (k + n) = m - n" for k m n :: nat by (fact add_diff_cancel_left)lemma diff_cancel2: "(m + k) - (n + k) = m - n" for k m n :: nat by (fact add_diff_cancel_right)lemma diff_add_0: "n - (n + m) = 0" for m n :: nat by (fact diff_add_zero)lemma add_mult_distrib2: "k * (m + n) = (k * m) + (k * n)" for k m n :: nat by (fact distrib_left)lemmas nat_distrib = add_mult_distrib distrib_left diff_mult_distrib diff_mult_distrib2subsection \<open>Size of a datatype value\<close>class size = fixes size :: "'a \<Rightarrow> nat" \<comment> \<open>see further theory \<open>Wellfounded\<close>\<close>instantiation nat :: sizebegindefinition size_nat where [simp, code]: "size (n::nat) = n"instance ..endlemmas size_nat = size_nat_deflemma size_neq_size_imp_neq: "size x \<noteq> size y \<Longrightarrow> x \<noteq> y" by (erule contrapos_nn) (rule arg_cong)subsection \<open>Code module namespace\<close>code_identifier code_module Nat \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arithhide_const (open) of_nat_auxend