Removing the datatype declaration of "order" allows the standard General.order
to be used. Thus we can use Int.compare and String.compare instead of the
slower home-grown versions.
ruleshell.ML lemmas.ML set.ML fun.ML subset.ML equalities.ML prod.ML sum.ML wf.ML mono.ML fixedpt.ML nat.ML list.ML----------------------------------------------------------------ruleshell.ML\idx{refl} t = t::'a\idx{subst} [| s = t; P(s) |] ==> P(t::'a)\idx{abs},!!x::'a. f(x)::'b = g(x)) ==> (%x.f(x)) = (%x.g(x)))\idx{disch} (P ==> Q) ==> P-->Q\idx{mp} [| P-->Q; P |] ==> Q\idx{True_def} True = ((%x.x)=(%x.x))\idx{All_def} All = (%P. P = (%x.True))\idx{Ex_def} Ex = (%P. P(Eps(P)))\idx{False_def} False = (!P.P)\idx{not_def} not = (%P. P-->False)\idx{and_def} op & = (%P Q. !R. (P-->Q-->R) --> R)\idx{or_def} op | = (%P Q. !R. (P-->R) --> (Q-->R) --> R)\idx{Ex1_def} Ex1 == (%P. ? x. P(x) & (! y. P(y) --> y=x))\idx{iff} (P-->Q) --> (Q-->P) --> (P=Q)\idx{True_or_False} (P=True) | (P=False)\idx{select} P(x::'a) --> P(Eps(P))\idx{Inv_def} Inv = (%(f::'a=>'b) y. @x. f(x)=y)\idx{o_def} op o = (%(f::'b=>'c) g (x::'a). f(g(x)))\idx{Cond_def} Cond = (%P x y.@z::'a. (P=True --> z=x) & (P=False --> z=y))----------------------------------------------------------------lemmas.ML\idx{sym} s=t ==> t=s\idx{trans} [| r=s; s=t |] ==> r=t\idx{box_equals} [| a=b; a=c; b=d |] ==> c=d \idx{ap_term} s=t ==> f(s)=f(t)\idx{ap_thm} s::'a=>'b = t ==> s(x)=t(x)\idx{cong} [| f = g; x::'a = y |] ==> f(x) = g(y)\idx{iffI} [| P ==> Q; Q ==> P |] ==> P=Q\idx{iffD1} [| P=Q; Q |] ==> P\idx{iffE} [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R\idx{eqTrueI} P ==> P=True \idx{eqTrueE} P=True ==> P \idx{allI} (!!x::'a. P(x)) ==> !x. P(x)\idx{spec} !x::'a.P(x) ==> P(x)\idx{allE} [| !x.P(x); P(x) ==> R |] ==> R\idx{all_dupE} [| ! x.P(x); [| P(x); ! x.P(x) |] ==> R |] ==> R\idx{FalseE} False ==> P\idx{False_neq_True} False=True ==> P\idx{notI} (P ==> False) ==> ~P\idx{notE} [| ~P; P |] ==> R\idx{impE} [| P-->Q; P; Q ==> R |] ==> R\idx{rev_mp} [| P; P --> Q |] ==> Q\idx{contrapos} [| ~Q; P==>Q |] ==> ~P\idx{exI} P(x) ==> ? x::'a.P(x)\idx{exE} [| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q\idx{conjI} [| P; Q |] ==> P&Q\idx{conjunct1} [| P & Q |] ==> P\idx{conjunct2} [| P & Q |] ==> Q \idx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R\idx{disjI1} P ==> P|Q\idx{disjI2} Q ==> P|Q\idx{disjE} [| P | Q; P ==> R; Q ==> R |] ==> R\idx{ccontr} (~P ==> False) ==> P\idx{classical} (~P ==> P) ==> P\idx{notnotD} ~~P ==> P\idx{ex1I} [| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x)\idx{ex1E} [| ?! x.P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R\idx{select_equality} [| P(a); !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a\idx{disjCI} (~Q ==> P) ==> P|Q\idx{excluded_middle} ~P | P\idx{impCE} [| P-->Q; ~P ==> R; Q ==> R |] ==> R \idx{iffCE} [| P=Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R\idx{exCI} (! x. ~P(x) ==> P(a)) ==> ? x.P(x)\idx{swap} ~P ==> (~Q ==> P) ==> Q----------------------------------------------------------------simpdata.ML\idx{if_True} Cond(True,x,y) = x\idx{if_False} Cond(False,x,y) = y\idx{if_P} P ==> Cond(P,x,y) = x\idx{if_not_P} ~P ==> Cond(P,x,y) = y\idx{expand_if} P(Cond(Q,x,y)) = ((Q --> P(x)) & (~Q --> P(y)))----------------------------------------------------------------\idx{set.ML}\idx{CollectI} [| P(a) |] ==> a : \{x.P(x)\}\idx{CollectD} [| a : \{x.P(x)\} |] ==> P(a)\idx{set_ext} [| !!x. (x:A) = (x:B) |] ==> A = B\idx{Ball_def} Ball(A,P) == ! x. x:A --> P(x)\idx{Bex_def} Bex(A,P) == ? x. x:A & P(x)\idx{subset_def} A <= B == ! x:A. x:B\idx{Un_def} A Un B == \{x.x:A | x:B\}\idx{Int_def} A Int B == \{x.x:A & x:B\}\idx{Compl_def} Compl(A) == \{x. ~x:A\}\idx{Inter_def} Inter(S) == \{x. ! A:S. x:A\}\idx{Union_def} Union(S) == \{x. ? A:S. x:A\}\idx{INTER_def} INTER(A,B) == \{y. ! x:A. y: B(x)\}\idx{UNION_def} UNION(A,B) == \{y. ? x:A. y: B(x)\}\idx{mono_def} mono(f) == (!A B. A <= B --> f(A) <= f(B))\idx{image_def} f``A == \{y. ? x:A. y=f(x)\}\idx{singleton_def} \{a\} == \{x.x=a\}\idx{range_def} range(f) == \{y. ? x. y=f(x)\}\idx{One_One_def} One_One(f) == ! x y. f(x)=f(y) --> x=y\idx{One_One_on_def} One_One_on(f,A) == !x y. x:A --> y:A --> f(x)=f(y) --> x=y\idx{Onto_def} Onto(f) == ! y. ? x. y=f(x)\idx{Collect_cong} [| !!x. P(x)=Q(x) |] ==> \{x. P(x)\} = \{x. Q(x)\}\idx{ballI} [| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)\idx{bspec} [| ! x:A. P(x); x:A |] ==> P(x)\idx{ballE} [| ! x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q\idx{bexI} [| P(x); x:A |] ==> ? x:A. P(x)\idx{bexCI} [| ! x:A. ~P(x) ==> P(a); a:A |] ==> ? x:A.P(x)\idx{bexE} [| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q\idx{ball_cong} [| A=A'; !!x. x:A' ==> P(x) = P'(x) |] ==> (! x:A. P(x)) = (! x:A'. P'(x))\idx{bex_cong} [| A=A'; !!x. x:A' ==> P(x) = P'(x) |] ==> (? x:A. P(x)) = (? x:A'. P'(x))\idx{subsetI} (!!x.x:A ==> x:B) ==> A <= B\idx{subsetD} [| A <= B; c:A |] ==> c:B\idx{subsetCE} [| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P\idx{subset_refl} A <= A\idx{subset_antisym} [| A <= B; B <= A |] ==> A = B\idx{subset_trans} [| A<=B; B<=C |] ==> A<=C\idx{equalityD1} A = B ==> A<=B\idx{equalityD2} A = B ==> B<=A\idx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P\idx{singletonI} a : \{a\}\idx{singletonD} b : \{a\} ==> b=a\idx{imageI} [| x:A |] ==> f(x) : f``A\idx{imageE} [| b : f``A; !!x.[| b=f(x); x:A |] ==> P |] ==> P\idx{rangeI} f(x) : range(f)\idx{rangeE} [| b : range(f); !!x.[| b=f(x) |] ==> P |] ==> P\idx{UnionI} [| X:C; A:X |] ==> A : Union(C)\idx{UnionE} [| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R\idx{InterI} [| !!X. X:C ==> A:X |] ==> A : Inter(C)\idx{InterD} [| A : Inter(C); X:C |] ==> A:X\idx{InterE} [| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R\idx{UN_I} [| a:A; b: B(a) |] ==> b: (UN x:A. B(x))\idx{UN_E} [| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R\idx{INT_I} (!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))\idx{INT_D} [| b : (INT x:A. B(x)); a:A |] ==> b: B(a)\idx{INT_E} [| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R\idx{UnI1} c:A ==> c : A Un B\idx{UnI2} c:B ==> c : A Un B\idx{UnCI} (~c:B ==> c:A) ==> c : A Un B\idx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P\idx{IntI} [| c:A; c:B |] ==> c : A Int B\idx{IntD1} c : A Int B ==> c:A\idx{IntD2} c : A Int B ==> c:B\idx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P\idx{ComplI} [| c:A ==> False |] ==> c : Compl(A)\idx{ComplD} [| c : Compl(A) |] ==> ~c:A\idx{monoI} [| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)\idx{monoD} [| mono(f); A <= B |] ==> f(A) <= f(B)----------------------------------------------------------------\idx{fun.ML}\idx{One_OneI} [| !! x y. f(x) = f(y) ==> x=y |] ==> One_One(f)\idx{One_One_inverseI} (!!x. g(f(x)) = x) ==> One_One(f)\idx{One_OneD} [| One_One(f); f(x) = f(y) |] ==> x=y\idx{Inv_f_f} One_One(f) ==> Inv(f,f(x)) = x\idx{f_Inv_f} y : range(f) ==> f(Inv(f,y)) = y\idx{Inv_injective} [| Inv(f,x)=Inv(f,y); x: range(f); y: range(f) |] ==> x=y\idx{One_One_onI} (!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> One_One_on(f,A)\idx{One_One_on_inverseI} (!!x. x:A ==> g(f(x)) = x) ==> One_One_on(f,A)\idx{One_One_onD} [| One_One_on(f,A); f(x)=f(y); x:A; y:A |] ==> x=y\idx{One_One_on_contraD} [| One_One_on(f,A); ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)----------------------------------------------------------------\idx{subset.ML}\idx{Union_upper} B:A ==> B <= Union(A)\idx{Union_least} [| !!X. X:A ==> X<=C |] ==> Union(A) <= C\idx{Inter_lower} B:A ==> Inter(A) <= B\idx{Inter_greatest} [| !!X. X:A ==> C<=X |] ==> C <= Inter(A)\idx{Un_upper1} A <= A Un B\idx{Un_upper2} B <= A Un B\idx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C\idx{Int_lower1} A Int B <= A\idx{Int_lower2} A Int B <= B\idx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B----------------------------------------------------------------\idx{equalities.ML}\idx{Int_absorb} A Int A = A\idx{Int_commute} A Int B = B Int A\idx{Int_assoc} (A Int B) Int C = A Int (B Int C)\idx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C)\idx{Un_absorb} A Un A = A\idx{Un_commute} A Un B = B Un A\idx{Un_assoc} (A Un B) Un C = A Un (B Un C)\idx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C)\idx{Compl_disjoint} A Int Compl(A) = \{x.False\}\idx{Compl_partition A Un Compl(A) = \{x.True\}\idx{double_complement} Compl(Compl(A)) = A\idx{Compl_Un} Compl(A Un B) = Compl(A) Int Compl(B)\idx{Compl_Int} Compl(A Int B) = Compl(A) Un Compl(B)\idx{Union_Un_distrib} Union(A Un B) = Union(A) Un Union(B)\idx{Int_Union_image} A Int Union(B) = (UN C:B. A Int C)\idx{Un_Union_image} (UN x:C. A(x) Un B(x)) = Union(A``C) Un Union(B``C)\idx{Inter_Un_distrib} Inter(A Un B) = Inter(A) Int Inter(B)\idx{Un_Inter_image} A Un Inter(B) = (INT C:B. A Un C)\idx{Int_Inter_image} (INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C)----------------------------------------------------------------prod.ML mixfix = [ Delimfix((1<_,/_>), ['a,'b] => ('a,'b)prod, Pair), TInfixl(*, prod, 20) ],thy = extend_theory Set.thy Prod [([prod],([[term],[term]],term))], ([fst], 'a * 'b => 'a), ([snd], 'a * 'b => 'b), ([split], ['a * 'b, ['a,'b]=>'c] => 'c)],\idx{fst_def} fst(p) == @a. ? b. p = <a,b>),\idx{snd_def} snd(p) == @b. ? a. p = <a,b>),\idx{split_def} split(p,c) == c(fst(p),snd(p)))\idx{Pair_inject} [| <a, b> = <a',b'>; [| a=a'; b=b' |] ==> R |] ==> R\idx{fst_conv} fst(<a,b>) = a\idx{snd_conv} snd(<a,b>) = b\idx{split_conv} split(<a,b>, c) = c(a,b)\idx{surjective_pairing} p = <fst(p),snd(p)>----------------------------------------------------------------sum.ML mixfix = [TInfixl(+, sum, 10)],thy = extend_theory Prod.thy sum [([sum], ([[term],[term]],term))], [Inl], 'a => 'a+'b), [Inr], 'b => 'a+'b), [when], ['a+'b, 'a=>'c, 'b=>'c] =>'c)],\idx{when_def} when == (%p f g. @z. (!x. p=Inl(x) --> z=f(x)) & (!y. p=Inr(y) --> z=g(y))))\idx{Inl_not_Inr} ~ (Inl(a) = Inr(b))\idx{One_One_Inl} One_One(Inl)\idx{One_One_Inr} One_One(Inr)\idx{when_Inl_conv} when(Inl(x), f, g) = f(x)\idx{when_Inr_conv} when(Inr(x), f, g) = g(x)\idx{sumE} [| !!x::'a. P(Inl(x)); !!y::'b. P(Inr(y)) |] ==> P(s)\idx{surjective_sum} when(s, %x::'a. f(Inl(x)), %y::'b. f(Inr(y))) = f(s)????????????????????????????????????????????????????????????????trancl?----------------------------------------------------------------nat.ML Sext\{mixfix=[Delimfix(0, nat, 0), Infixl(<,[nat,nat] => bool,50)],thy = extend_theory Trancl.thy Nat[nat], ([],term))[nat_case], [nat, 'a, nat=>'a] =>'a),[pred_nat],nat*nat) set),[nat_rec], [nat, 'a, [nat, 'a]=>'a] => 'a)\idx{nat_case_def} nat_case == (%n a f. @z. (n=0 --> z=a) & (!x. n=Suc(x) --> z=f(x)))),\idx{pred_nat_def} pred_nat == \{p. ? n. p = <n, Suc(n)>\} ),\idx{less_def} m<n == <m,n>:trancl(pred_nat)),\idx{nat_rec_def} nat_rec(n,c,d) == wfrec(trancl(pred_nat), %rec l. nat_case(l, c, %m. d(m,rec(m))), n) )\idx{nat_induct} [| P(0); !!k. [| P(k) |] ==> P(Suc(k)) |] ==> P(n)\idx{Suc_not_Zero} ~ (Suc(m) = 0)\idx{One_One_Suc} One_One(Suc)\idx{n_not_Suc_n} ~(n=Suc(n))\idx{nat_case_0_conv} nat_case(0, a, f) = a\idx{nat_case_Suc_conv} nat_case(Suc(k), a, f) = f(k)\idx{pred_natI} <n, Suc(n)> : pred_nat\idx{pred_natE} [| p : pred_nat; !!x n. [| p = <n, Suc(n)> |] ==> R |] ==> R\idx{wf_pred_nat} wf(pred_nat)\idx{nat_rec_0_conv} nat_rec(0,c,h) = c\idx{nat_rec_Suc_conv} nat_rec(Suc(n), c, h) = h(n, nat_rec(n,c,h))(*** Basic properties of less than ***)\idx{less_trans} [| i<j; j<k |] ==> i<k\idx{lessI} n < Suc(n)\idx{zero_less_Suc} 0 < Suc(n)\idx{less_not_sym} n<m --> ~m<n \idx{less_not_refl} ~ (n<n)\idx{not_less0} ~ (n<0)\idx{Suc_less_eq} (Suc(m) < Suc(n)) = (m<n)\idx{less_induct} [| !!n. [| ! m. m<n --> P(m) |] ==> P(n) |] ==> P(n)\idx{less_linear} m<n | m=n | n<m----------------------------------------------------------------list.ML [([list], ([[term]],term))], ([Nil], 'a list), ([Cons], ['a, 'a list] => 'a list), ([list_rec], ['a list, 'b, ['a ,'a list, 'b]=>'b] => 'b), ([list_all], ('a => bool) => ('a list => bool)), ([map], ('a=>'b) => ('a list => 'b list))\idx{map_def} map(f,xs) == list_rec(xs, Nil, %x l r. Cons(f(x), r)) )\idx{list_induct} [| P(Nil); !!x xs. [| P(xs) |] ==> P(Cons(x,xs)) |] ==> P(l)\idx{Cons_not_Nil} ~ Cons(x,xs) = Nil\idx{Cons_Cons_eq} (Cons(x,xs)=Cons(y,ys)) = (x=y & xs=ys)\idx{list_rec_Nil_conv} list_rec(Nil,c,h) = c\idx{list_rec_Cons_conv} list_rec(Cons(a,l), c, h) = h(a, l, list_rec(l,c,h))\idx{map_Nil_conv} map(f,Nil) = Nil\idx{map_Cons_conv} map(f, Cons(x,xs)) = Cons(f(x), map(f,xs))