(* Title: Pure/conjunction.ML
Author: Makarius
Meta-level conjunction.
*)
signature CONJUNCTION =
sig
val conjunction: cterm
val mk_conjunction: cterm * cterm -> cterm
val mk_conjunction_balanced: cterm list -> cterm
val dest_conjunction: cterm -> cterm * cterm
val dest_conjunctions: cterm -> cterm list
val cong: thm -> thm -> thm
val convs: (cterm -> thm) -> cterm -> thm
val conjunctionD1: thm
val conjunctionD2: thm
val conjunctionI: thm
val intr: thm -> thm -> thm
val intr_balanced: thm list -> thm
val elim: thm -> thm * thm
val elim_balanced: int -> thm -> thm list
val curry_balanced: int -> thm -> thm
val uncurry_balanced: int -> thm -> thm
end;
structure Conjunction: CONJUNCTION =
struct
(** abstract syntax **)
fun certify t = Thm.cterm_of (Context.the_theory (Context.the_thread_data ())) t;
val read_prop = certify o Simple_Syntax.read_prop;
val true_prop = certify Logic.true_prop;
val conjunction = certify Logic.conjunction;
fun mk_conjunction (A, B) = Thm.apply (Thm.apply conjunction A) B;
fun mk_conjunction_balanced [] = true_prop
| mk_conjunction_balanced ts = Balanced_Tree.make mk_conjunction ts;
fun dest_conjunction ct =
(case Thm.term_of ct of
(Const ("Pure.conjunction", _) $ _ $ _) => Thm.dest_binop ct
| _ => raise TERM ("dest_conjunction", [Thm.term_of ct]));
fun dest_conjunctions ct =
(case try dest_conjunction ct of
NONE => [ct]
| SOME (A, B) => dest_conjunctions A @ dest_conjunctions B);
(** derived rules **)
(* conversion *)
val cong = Thm.combination o Thm.combination (Thm.reflexive conjunction);
fun convs cv ct =
(case try dest_conjunction ct of
NONE => cv ct
| SOME (A, B) => cong (convs cv A) (convs cv B));
(* intro/elim *)
local
val A = read_prop "A" and vA = read_prop "?A";
val B = read_prop "B" and vB = read_prop "?B";
val C = read_prop "C";
val ABC = read_prop "A ==> B ==> C";
val A_B = read_prop "A &&& B";
val conjunction_def =
Thm.unvarify_global
(Thm.axiom (Context.the_theory (Context.the_thread_data ())) "Pure.conjunction_def");
fun conjunctionD which =
Drule.implies_intr_list [A, B] (Thm.assume (which (A, B))) COMP
Thm.forall_elim_vars 0 (Thm.equal_elim conjunction_def (Thm.assume A_B));
in
val conjunctionD1 =
Drule.store_standard_thm (Binding.make ("conjunctionD1", @{here})) (conjunctionD #1);
val conjunctionD2 =
Drule.store_standard_thm (Binding.make ("conjunctionD2", @{here})) (conjunctionD #2);
val conjunctionI =
Drule.store_standard_thm (Binding.make ("conjunctionI", @{here}))
(Drule.implies_intr_list [A, B]
(Thm.equal_elim
(Thm.symmetric conjunction_def)
(Thm.forall_intr C (Thm.implies_intr ABC
(Drule.implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B])))));
fun intr tha thb =
Thm.implies_elim
(Thm.implies_elim
(Thm.instantiate ([], [(vA, Thm.cprop_of tha), (vB, Thm.cprop_of thb)]) conjunctionI)
tha)
thb;
fun elim th =
let
val (A, B) = dest_conjunction (Thm.cprop_of th)
handle TERM (msg, _) => raise THM (msg, 0, [th]);
val inst = Thm.instantiate ([], [(vA, A), (vB, B)]);
in
(Thm.implies_elim (inst conjunctionD1) th,
Thm.implies_elim (inst conjunctionD2) th)
end;
end;
(* balanced conjuncts *)
fun intr_balanced [] = asm_rl
| intr_balanced ths = Balanced_Tree.make (uncurry intr) ths;
fun elim_balanced 0 _ = []
| elim_balanced n th = Balanced_Tree.dest elim n th;
(* currying *)
local
fun conjs thy n =
let val As = map (fn A => Thm.cterm_of thy (Free (A, propT))) (Name.invent Name.context "A" n)
in (As, mk_conjunction_balanced As) end;
val B = read_prop "B";
fun comp_rule th rule =
Thm.adjust_maxidx_thm ~1 (th COMP
(rule |> Thm.forall_intr_frees |> Thm.forall_elim_vars (Thm.maxidx_of th + 1)));
in
(*
A1 &&& ... &&& An ==> B
-----------------------
A1 ==> ... ==> An ==> B
*)
fun curry_balanced n th =
if n < 2 then th
else
let
val thy = Thm.theory_of_thm th;
val (As, C) = conjs thy n;
val D = Drule.mk_implies (C, B);
in
comp_rule th
(Thm.implies_elim (Thm.assume D) (intr_balanced (map Thm.assume As))
|> Drule.implies_intr_list (D :: As))
end;
(*
A1 ==> ... ==> An ==> B
-----------------------
A1 &&& ... &&& An ==> B
*)
fun uncurry_balanced n th =
if n < 2 then th
else
let
val thy = Thm.theory_of_thm th;
val (As, C) = conjs thy n;
val D = Drule.list_implies (As, B);
in
comp_rule th
(Drule.implies_elim_list (Thm.assume D) (elim_balanced n (Thm.assume C))
|> Drule.implies_intr_list [D, C])
end;
end;
end;