(* Title: ZF/Nat_ZF.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
section{*The Natural numbers As a Least Fixed Point*}
theory Nat_ZF imports OrdQuant Bool begin
definition
nat :: i where
"nat == lfp(Inf, %X. {0} \<union> {succ(i). i \<in> X})"
definition
quasinat :: "i => o" where
"quasinat(n) == n=0 | (\<exists>m. n = succ(m))"
definition
(*Has an unconditional succ case, which is used in "recursor" below.*)
nat_case :: "[i, i=>i, i]=>i" where
"nat_case(a,b,k) == THE y. k=0 & y=a | (\<exists>x. k=succ(x) & y=b(x))"
definition
nat_rec :: "[i, i, [i,i]=>i]=>i" where
"nat_rec(k,a,b) ==
wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"
(*Internalized relations on the naturals*)
definition
Le :: i where
"Le == {<x,y>:nat*nat. x \<le> y}"
definition
Lt :: i where
"Lt == {<x, y>:nat*nat. x < y}"
definition
Ge :: i where
"Ge == {<x,y>:nat*nat. y \<le> x}"
definition
Gt :: i where
"Gt == {<x,y>:nat*nat. y < x}"
definition
greater_than :: "i=>i" where
"greater_than(n) == {i \<in> nat. n < i}"
text{*No need for a less-than operator: a natural number is its list of
predecessors!*}
lemma nat_bnd_mono: "bnd_mono(Inf, %X. {0} \<union> {succ(i). i \<in> X})"
apply (rule bnd_monoI)
apply (cut_tac infinity, blast, blast)
done
(* @{term"nat = {0} \<union> {succ(x). x \<in> nat}"} *)
lemmas nat_unfold = nat_bnd_mono [THEN nat_def [THEN def_lfp_unfold]]
(** Type checking of 0 and successor **)
lemma nat_0I [iff,TC]: "0 \<in> nat"
apply (subst nat_unfold)
apply (rule singletonI [THEN UnI1])
done
lemma nat_succI [intro!,TC]: "n \<in> nat ==> succ(n) \<in> nat"
apply (subst nat_unfold)
apply (erule RepFunI [THEN UnI2])
done
lemma nat_1I [iff,TC]: "1 \<in> nat"
by (rule nat_0I [THEN nat_succI])
lemma nat_2I [iff,TC]: "2 \<in> nat"
by (rule nat_1I [THEN nat_succI])
lemma bool_subset_nat: "bool \<subseteq> nat"
by (blast elim!: boolE)
lemmas bool_into_nat = bool_subset_nat [THEN subsetD]
subsection{*Injectivity Properties and Induction*}
(*Mathematical induction*)
lemma nat_induct [case_names 0 succ, induct set: nat]:
"[| n \<in> nat; P(0); !!x. [| x \<in> nat; P(x) |] ==> P(succ(x)) |] ==> P(n)"
by (erule def_induct [OF nat_def nat_bnd_mono], blast)
lemma natE:
assumes "n \<in> nat"
obtains ("0") "n=0" | (succ) x where "x \<in> nat" "n=succ(x)"
using assms
by (rule nat_unfold [THEN equalityD1, THEN subsetD, THEN UnE]) auto
lemma nat_into_Ord [simp]: "n \<in> nat ==> Ord(n)"
by (erule nat_induct, auto)
(* @{term"i \<in> nat ==> 0 \<le> i"}; same thing as @{term"0<succ(i)"} *)
lemmas nat_0_le = nat_into_Ord [THEN Ord_0_le]
(* @{term"i \<in> nat ==> i \<le> i"}; same thing as @{term"i<succ(i)"} *)
lemmas nat_le_refl = nat_into_Ord [THEN le_refl]
lemma Ord_nat [iff]: "Ord(nat)"
apply (rule OrdI)
apply (erule_tac [2] nat_into_Ord [THEN Ord_is_Transset])
apply (unfold Transset_def)
apply (rule ballI)
apply (erule nat_induct, auto)
done
lemma Limit_nat [iff]: "Limit(nat)"
apply (unfold Limit_def)
apply (safe intro!: ltI Ord_nat)
apply (erule ltD)
done
lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"
by (induct a rule: nat_induct, auto)
lemma succ_natD: "succ(i): nat ==> i \<in> nat"
by (rule Ord_trans [OF succI1], auto)
lemma nat_succ_iff [iff]: "succ(n): nat \<longleftrightarrow> n \<in> nat"
by (blast dest!: succ_natD)
lemma nat_le_Limit: "Limit(i) ==> nat \<le> i"
apply (rule subset_imp_le)
apply (simp_all add: Limit_is_Ord)
apply (rule subsetI)
apply (erule nat_induct)
apply (erule Limit_has_0 [THEN ltD])
apply (blast intro: Limit_has_succ [THEN ltD] ltI Limit_is_Ord)
done
(* [| succ(i): k; k \<in> nat |] ==> i \<in> k *)
lemmas succ_in_naturalD = Ord_trans [OF succI1 _ nat_into_Ord]
lemma lt_nat_in_nat: "[| m<n; n \<in> nat |] ==> m \<in> nat"
apply (erule ltE)
apply (erule Ord_trans, assumption, simp)
done
lemma le_in_nat: "[| m \<le> n; n \<in> nat |] ==> m \<in> nat"
by (blast dest!: lt_nat_in_nat)
subsection{*Variations on Mathematical Induction*}
(*complete induction*)
lemmas complete_induct = Ord_induct [OF _ Ord_nat, case_names less, consumes 1]
lemmas complete_induct_rule =
complete_induct [rule_format, case_names less, consumes 1]
lemma nat_induct_from_lemma [rule_format]:
"[| n \<in> nat; m \<in> nat;
!!x. [| x \<in> nat; m \<le> x; P(x) |] ==> P(succ(x)) |]
==> m \<le> n \<longrightarrow> P(m) \<longrightarrow> P(n)"
apply (erule nat_induct)
apply (simp_all add: distrib_simps le0_iff le_succ_iff)
done
(*Induction starting from m rather than 0*)
lemma nat_induct_from:
"[| m \<le> n; m \<in> nat; n \<in> nat;
P(m);
!!x. [| x \<in> nat; m \<le> x; P(x) |] ==> P(succ(x)) |]
==> P(n)"
apply (blast intro: nat_induct_from_lemma)
done
(*Induction suitable for subtraction and less-than*)
lemma diff_induct [case_names 0 0_succ succ_succ, consumes 2]:
"[| m \<in> nat; n \<in> nat;
!!x. x \<in> nat ==> P(x,0);
!!y. y \<in> nat ==> P(0,succ(y));
!!x y. [| x \<in> nat; y \<in> nat; P(x,y) |] ==> P(succ(x),succ(y)) |]
==> P(m,n)"
apply (erule_tac x = m in rev_bspec)
apply (erule nat_induct, simp)
apply (rule ballI)
apply (rename_tac i j)
apply (erule_tac n=j in nat_induct, auto)
done
(** Induction principle analogous to trancl_induct **)
lemma succ_lt_induct_lemma [rule_format]:
"m \<in> nat ==> P(m,succ(m)) \<longrightarrow> (\<forall>x\<in>nat. P(m,x) \<longrightarrow> P(m,succ(x))) \<longrightarrow>
(\<forall>n\<in>nat. m<n \<longrightarrow> P(m,n))"
apply (erule nat_induct)
apply (intro impI, rule nat_induct [THEN ballI])
prefer 4 apply (intro impI, rule nat_induct [THEN ballI])
apply (auto simp add: le_iff)
done
lemma succ_lt_induct:
"[| m<n; n \<in> nat;
P(m,succ(m));
!!x. [| x \<in> nat; P(m,x) |] ==> P(m,succ(x)) |]
==> P(m,n)"
by (blast intro: succ_lt_induct_lemma lt_nat_in_nat)
subsection{*quasinat: to allow a case-split rule for @{term nat_case}*}
text{*True if the argument is zero or any successor*}
lemma [iff]: "quasinat(0)"
by (simp add: quasinat_def)
lemma [iff]: "quasinat(succ(x))"
by (simp add: quasinat_def)
lemma nat_imp_quasinat: "n \<in> nat ==> quasinat(n)"
by (erule natE, simp_all)
lemma non_nat_case: "~ quasinat(x) ==> nat_case(a,b,x) = 0"
by (simp add: quasinat_def nat_case_def)
lemma nat_cases_disj: "k=0 | (\<exists>y. k = succ(y)) | ~ quasinat(k)"
apply (case_tac "k=0", simp)
apply (case_tac "\<exists>m. k = succ(m)")
apply (simp_all add: quasinat_def)
done
lemma nat_cases:
"[|k=0 ==> P; !!y. k = succ(y) ==> P; ~ quasinat(k) ==> P|] ==> P"
by (insert nat_cases_disj [of k], blast)
(** nat_case **)
lemma nat_case_0 [simp]: "nat_case(a,b,0) = a"
by (simp add: nat_case_def)
lemma nat_case_succ [simp]: "nat_case(a,b,succ(n)) = b(n)"
by (simp add: nat_case_def)
lemma nat_case_type [TC]:
"[| n \<in> nat; a \<in> C(0); !!m. m \<in> nat ==> b(m): C(succ(m)) |]
==> nat_case(a,b,n) \<in> C(n)"
by (erule nat_induct, auto)
lemma split_nat_case:
"P(nat_case(a,b,k)) \<longleftrightarrow>
((k=0 \<longrightarrow> P(a)) & (\<forall>x. k=succ(x) \<longrightarrow> P(b(x))) & (~ quasinat(k) \<longrightarrow> P(0)))"
apply (rule nat_cases [of k])
apply (auto simp add: non_nat_case)
done
subsection{*Recursion on the Natural Numbers*}
(** nat_rec is used to define eclose and transrec, then becomes obsolete.
The operator rec, from arith.thy, has fewer typing conditions **)
lemma nat_rec_0: "nat_rec(0,a,b) = a"
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
apply (rule wf_Memrel)
apply (rule nat_case_0)
done
lemma nat_rec_succ: "m \<in> nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))"
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
apply (rule wf_Memrel)
apply (simp add: vimage_singleton_iff)
done
(** The union of two natural numbers is a natural number -- their maximum **)
lemma Un_nat_type [TC]: "[| i \<in> nat; j \<in> nat |] ==> i \<union> j \<in> nat"
apply (rule Un_least_lt [THEN ltD])
apply (simp_all add: lt_def)
done
lemma Int_nat_type [TC]: "[| i \<in> nat; j \<in> nat |] ==> i \<inter> j \<in> nat"
apply (rule Int_greatest_lt [THEN ltD])
apply (simp_all add: lt_def)
done
(*needed to simplify unions over nat*)
lemma nat_nonempty [simp]: "nat \<noteq> 0"
by blast
text{*A natural number is the set of its predecessors*}
lemma nat_eq_Collect_lt: "i \<in> nat ==> {j\<in>nat. j<i} = i"
apply (rule equalityI)
apply (blast dest: ltD)
apply (auto simp add: Ord_mem_iff_lt)
apply (blast intro: lt_trans)
done
lemma Le_iff [iff]: "<x,y> \<in> Le \<longleftrightarrow> x \<le> y & x \<in> nat & y \<in> nat"
by (force simp add: Le_def)
end