(* Title: HOL/Divides.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1999 University of Cambridge
*)
header {* The division operators div and mod *}
theory Divides
imports Nat_Transfer
begin
subsection {* Syntactic division operations *}
class div = dvd +
fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70)
and mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70)
subsection {* Abstract division in commutative semirings. *}
class semiring_div = comm_semiring_1_cancel + no_zero_divisors + div +
assumes mod_div_equality: "a div b * b + a mod b = a"
and div_by_0 [simp]: "a div 0 = 0"
and div_0 [simp]: "0 div a = 0"
and div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
begin
text {* @{const div} and @{const mod} *}
lemma mod_div_equality2: "b * (a div b) + a mod b = a"
unfolding mult_commute [of b]
by (rule mod_div_equality)
lemma mod_div_equality': "a mod b + a div b * b = a"
using mod_div_equality [of a b]
by (simp only: add_ac)
lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c"
by (simp add: mod_div_equality)
lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c"
by (simp add: mod_div_equality2)
lemma mod_by_0 [simp]: "a mod 0 = a"
using mod_div_equality [of a zero] by simp
lemma mod_0 [simp]: "0 mod a = 0"
using mod_div_equality [of zero a] div_0 by simp
lemma div_mult_self2 [simp]:
assumes "b \<noteq> 0"
shows "(a + b * c) div b = c + a div b"
using assms div_mult_self1 [of b a c] by (simp add: mult_commute)
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
proof (cases "b = 0")
case True then show ?thesis by simp
next
case False
have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
by (simp add: mod_div_equality)
also from False div_mult_self1 [of b a c] have
"\<dots> = (c + a div b) * b + (a + c * b) mod b"
by (simp add: algebra_simps)
finally have "a = a div b * b + (a + c * b) mod b"
by (simp add: add_commute [of a] add_assoc distrib_right)
then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
by (simp add: mod_div_equality)
then show ?thesis by simp
qed
lemma mod_mult_self2 [simp]: "(a + b * c) mod b = a mod b"
by (simp add: mult_commute [of b])
lemma div_mult_self1_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> b * a div b = a"
using div_mult_self2 [of b 0 a] by simp
lemma div_mult_self2_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> a * b div b = a"
using div_mult_self1 [of b 0 a] by simp
lemma mod_mult_self1_is_0 [simp]: "b * a mod b = 0"
using mod_mult_self2 [of 0 b a] by simp
lemma mod_mult_self2_is_0 [simp]: "a * b mod b = 0"
using mod_mult_self1 [of 0 a b] by simp
lemma div_by_1 [simp]: "a div 1 = a"
using div_mult_self2_is_id [of 1 a] zero_neq_one by simp
lemma mod_by_1 [simp]: "a mod 1 = 0"
proof -
from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp
then have "a + a mod 1 = a + 0" by simp
then show ?thesis by (rule add_left_imp_eq)
qed
lemma mod_self [simp]: "a mod a = 0"
using mod_mult_self2_is_0 [of 1] by simp
lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1"
using div_mult_self2_is_id [of _ 1] by simp
lemma div_add_self1 [simp]:
assumes "b \<noteq> 0"
shows "(b + a) div b = a div b + 1"
using assms div_mult_self1 [of b a 1] by (simp add: add_commute)
lemma div_add_self2 [simp]:
assumes "b \<noteq> 0"
shows "(a + b) div b = a div b + 1"
using assms div_add_self1 [of b a] by (simp add: add_commute)
lemma mod_add_self1 [simp]:
"(b + a) mod b = a mod b"
using mod_mult_self1 [of a 1 b] by (simp add: add_commute)
lemma mod_add_self2 [simp]:
"(a + b) mod b = a mod b"
using mod_mult_self1 [of a 1 b] by simp
lemma mod_div_decomp:
fixes a b
obtains q r where "q = a div b" and "r = a mod b"
and "a = q * b + r"
proof -
from mod_div_equality have "a = a div b * b + a mod b" by simp
moreover have "a div b = a div b" ..
moreover have "a mod b = a mod b" ..
note that ultimately show thesis by blast
qed
lemma dvd_eq_mod_eq_0 [code]: "a dvd b \<longleftrightarrow> b mod a = 0"
proof
assume "b mod a = 0"
with mod_div_equality [of b a] have "b div a * a = b" by simp
then have "b = a * (b div a)" unfolding mult_commute ..
then have "\<exists>c. b = a * c" ..
then show "a dvd b" unfolding dvd_def .
next
assume "a dvd b"
then have "\<exists>c. b = a * c" unfolding dvd_def .
then obtain c where "b = a * c" ..
then have "b mod a = a * c mod a" by simp
then have "b mod a = c * a mod a" by (simp add: mult_commute)
then show "b mod a = 0" by simp
qed
lemma mod_div_trivial [simp]: "a mod b div b = 0"
proof (cases "b = 0")
assume "b = 0"
thus ?thesis by simp
next
assume "b \<noteq> 0"
hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
by (rule div_mult_self1 [symmetric])
also have "\<dots> = a div b"
by (simp only: mod_div_equality')
also have "\<dots> = a div b + 0"
by simp
finally show ?thesis
by (rule add_left_imp_eq)
qed
lemma mod_mod_trivial [simp]: "a mod b mod b = a mod b"
proof -
have "a mod b mod b = (a mod b + a div b * b) mod b"
by (simp only: mod_mult_self1)
also have "\<dots> = a mod b"
by (simp only: mod_div_equality')
finally show ?thesis .
qed
lemma dvd_imp_mod_0: "a dvd b \<Longrightarrow> b mod a = 0"
by (rule dvd_eq_mod_eq_0[THEN iffD1])
lemma dvd_div_mult_self: "a dvd b \<Longrightarrow> (b div a) * a = b"
by (subst (2) mod_div_equality [of b a, symmetric]) (simp add:dvd_imp_mod_0)
lemma dvd_mult_div_cancel: "a dvd b \<Longrightarrow> a * (b div a) = b"
by (drule dvd_div_mult_self) (simp add: mult_commute)
lemma dvd_div_mult: "a dvd b \<Longrightarrow> (b div a) * c = b * c div a"
apply (cases "a = 0")
apply simp
apply (auto simp: dvd_def mult_assoc)
done
lemma div_dvd_div[simp]:
"a dvd b \<Longrightarrow> a dvd c \<Longrightarrow> (b div a dvd c div a) = (b dvd c)"
apply (cases "a = 0")
apply simp
apply (unfold dvd_def)
apply auto
apply(blast intro:mult_assoc[symmetric])
apply(fastforce simp add: mult_assoc)
done
lemma dvd_mod_imp_dvd: "[| k dvd m mod n; k dvd n |] ==> k dvd m"
apply (subgoal_tac "k dvd (m div n) *n + m mod n")
apply (simp add: mod_div_equality)
apply (simp only: dvd_add dvd_mult)
done
text {* Addition respects modular equivalence. *}
lemma mod_add_left_eq: "(a + b) mod c = (a mod c + b) mod c"
proof -
have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a mod c + b + a div c * c) mod c"
by (simp only: add_ac)
also have "\<dots> = (a mod c + b) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_add_right_eq: "(a + b) mod c = (a + b mod c) mod c"
proof -
have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a + b mod c + b div c * c) mod c"
by (simp only: add_ac)
also have "\<dots> = (a + b mod c) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_add_eq: "(a + b) mod c = (a mod c + b mod c) mod c"
by (rule trans [OF mod_add_left_eq mod_add_right_eq])
lemma mod_add_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a + b) mod c = (a' + b') mod c"
proof -
have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
unfolding assms ..
thus ?thesis
by (simp only: mod_add_eq [symmetric])
qed
lemma div_add [simp]: "z dvd x \<Longrightarrow> z dvd y
\<Longrightarrow> (x + y) div z = x div z + y div z"
by (cases "z = 0", simp, unfold dvd_def, auto simp add: algebra_simps)
text {* Multiplication respects modular equivalence. *}
lemma mod_mult_left_eq: "(a * b) mod c = ((a mod c) * b) mod c"
proof -
have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
by (simp only: algebra_simps)
also have "\<dots> = (a mod c * b) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_mult_right_eq: "(a * b) mod c = (a * (b mod c)) mod c"
proof -
have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a * (b mod c) + a * (b div c) * c) mod c"
by (simp only: algebra_simps)
also have "\<dots> = (a * (b mod c)) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_mult_eq: "(a * b) mod c = ((a mod c) * (b mod c)) mod c"
by (rule trans [OF mod_mult_left_eq mod_mult_right_eq])
lemma mod_mult_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a * b) mod c = (a' * b') mod c"
proof -
have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
unfolding assms ..
thus ?thesis
by (simp only: mod_mult_eq [symmetric])
qed
text {* Exponentiation respects modular equivalence. *}
lemma power_mod: "(a mod b)^n mod b = a^n mod b"
apply (induct n, simp_all)
apply (rule mod_mult_right_eq [THEN trans])
apply (simp (no_asm_simp))
apply (rule mod_mult_eq [symmetric])
done
lemma mod_mod_cancel:
assumes "c dvd b"
shows "a mod b mod c = a mod c"
proof -
from `c dvd b` obtain k where "b = c * k"
by (rule dvdE)
have "a mod b mod c = a mod (c * k) mod c"
by (simp only: `b = c * k`)
also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
by (simp only: mod_mult_self1)
also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
by (simp only: add_ac mult_ac)
also have "\<dots> = a mod c"
by (simp only: mod_div_equality)
finally show ?thesis .
qed
lemma div_mult_div_if_dvd:
"y dvd x \<Longrightarrow> z dvd w \<Longrightarrow> (x div y) * (w div z) = (x * w) div (y * z)"
apply (cases "y = 0", simp)
apply (cases "z = 0", simp)
apply (auto elim!: dvdE simp add: algebra_simps)
apply (subst mult_assoc [symmetric])
apply (simp add: no_zero_divisors)
done
lemma div_mult_swap:
assumes "c dvd b"
shows "a * (b div c) = (a * b) div c"
proof -
from assms have "b div c * (a div 1) = b * a div (c * 1)"
by (simp only: div_mult_div_if_dvd one_dvd)
then show ?thesis by (simp add: mult_commute)
qed
lemma div_mult_mult2 [simp]:
"c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
by (drule div_mult_mult1) (simp add: mult_commute)
lemma div_mult_mult1_if [simp]:
"(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
by simp_all
lemma mod_mult_mult1:
"(c * a) mod (c * b) = c * (a mod b)"
proof (cases "c = 0")
case True then show ?thesis by simp
next
case False
from mod_div_equality
have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
= c * a + c * (a mod b)" by (simp add: algebra_simps)
with mod_div_equality show ?thesis by simp
qed
lemma mod_mult_mult2:
"(a * c) mod (b * c) = (a mod b) * c"
using mod_mult_mult1 [of c a b] by (simp add: mult_commute)
lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)"
by (fact mod_mult_mult2 [symmetric])
lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)"
by (fact mod_mult_mult1 [symmetric])
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
unfolding dvd_def by (auto simp add: mod_mult_mult1)
lemma dvd_mod_iff: "k dvd n \<Longrightarrow> k dvd (m mod n) \<longleftrightarrow> k dvd m"
by (blast intro: dvd_mod_imp_dvd dvd_mod)
lemma div_power:
"y dvd x \<Longrightarrow> (x div y) ^ n = x ^ n div y ^ n"
apply (induct n)
apply simp
apply(simp add: div_mult_div_if_dvd dvd_power_same)
done
lemma dvd_div_eq_mult:
assumes "a \<noteq> 0" and "a dvd b"
shows "b div a = c \<longleftrightarrow> b = c * a"
proof
assume "b = c * a"
then show "b div a = c" by (simp add: assms)
next
assume "b div a = c"
then have "b div a * a = c * a" by simp
moreover from `a dvd b` have "b div a * a = b" by (simp add: dvd_div_mult_self)
ultimately show "b = c * a" by simp
qed
lemma dvd_div_div_eq_mult:
assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d"
shows "b div a = d div c \<longleftrightarrow> b * c = a * d"
using assms by (auto simp add: mult_commute [of _ a] dvd_div_mult_self dvd_div_eq_mult div_mult_swap intro: sym)
end
class ring_div = semiring_div + comm_ring_1
begin
subclass ring_1_no_zero_divisors ..
text {* Negation respects modular equivalence. *}
lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b"
proof -
have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
by (simp only: mod_div_equality)
also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
by (simp only: minus_add_distrib minus_mult_left add_ac)
also have "\<dots> = (- (a mod b)) mod b"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_minus_cong:
assumes "a mod b = a' mod b"
shows "(- a) mod b = (- a') mod b"
proof -
have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
unfolding assms ..
thus ?thesis
by (simp only: mod_minus_eq [symmetric])
qed
text {* Subtraction respects modular equivalence. *}
lemma mod_diff_left_eq: "(a - b) mod c = (a mod c - b) mod c"
unfolding diff_minus
by (intro mod_add_cong mod_minus_cong) simp_all
lemma mod_diff_right_eq: "(a - b) mod c = (a - b mod c) mod c"
unfolding diff_minus
by (intro mod_add_cong mod_minus_cong) simp_all
lemma mod_diff_eq: "(a - b) mod c = (a mod c - b mod c) mod c"
unfolding diff_minus
by (intro mod_add_cong mod_minus_cong) simp_all
lemma mod_diff_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a - b) mod c = (a' - b') mod c"
unfolding diff_minus using assms
by (intro mod_add_cong mod_minus_cong)
lemma dvd_neg_div: "y dvd x \<Longrightarrow> -x div y = - (x div y)"
apply (case_tac "y = 0") apply simp
apply (auto simp add: dvd_def)
apply (subgoal_tac "-(y * k) = y * - k")
apply (erule ssubst)
apply (erule div_mult_self1_is_id)
apply simp
done
lemma dvd_div_neg: "y dvd x \<Longrightarrow> x div -y = - (x div y)"
apply (case_tac "y = 0") apply simp
apply (auto simp add: dvd_def)
apply (subgoal_tac "y * k = -y * -k")
apply (erule ssubst)
apply (rule div_mult_self1_is_id)
apply simp
apply simp
done
lemma div_minus_minus [simp]: "(-a) div (-b) = a div b"
using div_mult_mult1 [of "- 1" a b]
unfolding neg_equal_0_iff_equal by simp
lemma mod_minus_minus [simp]: "(-a) mod (-b) = - (a mod b)"
using mod_mult_mult1 [of "- 1" a b] by simp
lemma div_minus_right: "a div (-b) = (-a) div b"
using div_minus_minus [of "-a" b] by simp
lemma mod_minus_right: "a mod (-b) = - ((-a) mod b)"
using mod_minus_minus [of "-a" b] by simp
lemma div_minus1_right [simp]: "a div (-1) = -a"
using div_minus_right [of a 1] by simp
lemma mod_minus1_right [simp]: "a mod (-1) = 0"
using mod_minus_right [of a 1] by simp
end
subsection {* Division on @{typ nat} *}
text {*
We define @{const div} and @{const mod} on @{typ nat} by means
of a characteristic relation with two input arguments
@{term "m\<Colon>nat"}, @{term "n\<Colon>nat"} and two output arguments
@{term "q\<Colon>nat"}(uotient) and @{term "r\<Colon>nat"}(emainder).
*}
definition divmod_nat_rel :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where
"divmod_nat_rel m n qr \<longleftrightarrow>
m = fst qr * n + snd qr \<and>
(if n = 0 then fst qr = 0 else if n > 0 then 0 \<le> snd qr \<and> snd qr < n else n < snd qr \<and> snd qr \<le> 0)"
text {* @{const divmod_nat_rel} is total: *}
lemma divmod_nat_rel_ex:
obtains q r where "divmod_nat_rel m n (q, r)"
proof (cases "n = 0")
case True with that show thesis
by (auto simp add: divmod_nat_rel_def)
next
case False
have "\<exists>q r. m = q * n + r \<and> r < n"
proof (induct m)
case 0 with `n \<noteq> 0`
have "(0\<Colon>nat) = 0 * n + 0 \<and> 0 < n" by simp
then show ?case by blast
next
case (Suc m) then obtain q' r'
where m: "m = q' * n + r'" and n: "r' < n" by auto
then show ?case proof (cases "Suc r' < n")
case True
from m n have "Suc m = q' * n + Suc r'" by simp
with True show ?thesis by blast
next
case False then have "n \<le> Suc r'" by auto
moreover from n have "Suc r' \<le> n" by auto
ultimately have "n = Suc r'" by auto
with m have "Suc m = Suc q' * n + 0" by simp
with `n \<noteq> 0` show ?thesis by blast
qed
qed
with that show thesis
using `n \<noteq> 0` by (auto simp add: divmod_nat_rel_def)
qed
text {* @{const divmod_nat_rel} is injective: *}
lemma divmod_nat_rel_unique:
assumes "divmod_nat_rel m n qr"
and "divmod_nat_rel m n qr'"
shows "qr = qr'"
proof (cases "n = 0")
case True with assms show ?thesis
by (cases qr, cases qr')
(simp add: divmod_nat_rel_def)
next
case False
have aux: "\<And>q r q' r'. q' * n + r' = q * n + r \<Longrightarrow> r < n \<Longrightarrow> q' \<le> (q\<Colon>nat)"
apply (rule leI)
apply (subst less_iff_Suc_add)
apply (auto simp add: add_mult_distrib)
done
from `n \<noteq> 0` assms have "fst qr = fst qr'"
by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym)
moreover from this assms have "snd qr = snd qr'"
by (simp add: divmod_nat_rel_def)
ultimately show ?thesis by (cases qr, cases qr') simp
qed
text {*
We instantiate divisibility on the natural numbers by
means of @{const divmod_nat_rel}:
*}
definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
"divmod_nat m n = (THE qr. divmod_nat_rel m n qr)"
lemma divmod_nat_rel_divmod_nat:
"divmod_nat_rel m n (divmod_nat m n)"
proof -
from divmod_nat_rel_ex
obtain qr where rel: "divmod_nat_rel m n qr" .
then show ?thesis
by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique)
qed
lemma divmod_nat_unique:
assumes "divmod_nat_rel m n qr"
shows "divmod_nat m n = qr"
using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat)
instantiation nat :: semiring_div
begin
definition div_nat where
"m div n = fst (divmod_nat m n)"
lemma fst_divmod_nat [simp]:
"fst (divmod_nat m n) = m div n"
by (simp add: div_nat_def)
definition mod_nat where
"m mod n = snd (divmod_nat m n)"
lemma snd_divmod_nat [simp]:
"snd (divmod_nat m n) = m mod n"
by (simp add: mod_nat_def)
lemma divmod_nat_div_mod:
"divmod_nat m n = (m div n, m mod n)"
by (simp add: prod_eq_iff)
lemma div_nat_unique:
assumes "divmod_nat_rel m n (q, r)"
shows "m div n = q"
using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff)
lemma mod_nat_unique:
assumes "divmod_nat_rel m n (q, r)"
shows "m mod n = r"
using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff)
lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)"
using divmod_nat_rel_divmod_nat by (simp add: divmod_nat_div_mod)
lemma divmod_nat_zero: "divmod_nat m 0 = (0, m)"
by (simp add: divmod_nat_unique divmod_nat_rel_def)
lemma divmod_nat_zero_left: "divmod_nat 0 n = (0, 0)"
by (simp add: divmod_nat_unique divmod_nat_rel_def)
lemma divmod_nat_base: "m < n \<Longrightarrow> divmod_nat m n = (0, m)"
by (simp add: divmod_nat_unique divmod_nat_rel_def)
lemma divmod_nat_step:
assumes "0 < n" and "n \<le> m"
shows "divmod_nat m n = (Suc ((m - n) div n), (m - n) mod n)"
proof (rule divmod_nat_unique)
have "divmod_nat_rel (m - n) n ((m - n) div n, (m - n) mod n)"
by (rule divmod_nat_rel)
thus "divmod_nat_rel m n (Suc ((m - n) div n), (m - n) mod n)"
unfolding divmod_nat_rel_def using assms by auto
qed
text {* The ''recursion'' equations for @{const div} and @{const mod} *}
lemma div_less [simp]:
fixes m n :: nat
assumes "m < n"
shows "m div n = 0"
using assms divmod_nat_base by (simp add: prod_eq_iff)
lemma le_div_geq:
fixes m n :: nat
assumes "0 < n" and "n \<le> m"
shows "m div n = Suc ((m - n) div n)"
using assms divmod_nat_step by (simp add: prod_eq_iff)
lemma mod_less [simp]:
fixes m n :: nat
assumes "m < n"
shows "m mod n = m"
using assms divmod_nat_base by (simp add: prod_eq_iff)
lemma le_mod_geq:
fixes m n :: nat
assumes "n \<le> m"
shows "m mod n = (m - n) mod n"
using assms divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff)
instance proof
fix m n :: nat
show "m div n * n + m mod n = m"
using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def)
next
fix m n q :: nat
assume "n \<noteq> 0"
then show "(q + m * n) div n = m + q div n"
by (induct m) (simp_all add: le_div_geq)
next
fix m n q :: nat
assume "m \<noteq> 0"
hence "\<And>a b. divmod_nat_rel n q (a, b) \<Longrightarrow> divmod_nat_rel (m * n) (m * q) (a, m * b)"
unfolding divmod_nat_rel_def
by (auto split: split_if_asm, simp_all add: algebra_simps)
moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" .
ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" .
thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique)
next
fix n :: nat show "n div 0 = 0"
by (simp add: div_nat_def divmod_nat_zero)
next
fix n :: nat show "0 div n = 0"
by (simp add: div_nat_def divmod_nat_zero_left)
qed
end
lemma divmod_nat_if [code]: "divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else
let (q, r) = divmod_nat (m - n) n in (Suc q, r))"
by (simp add: prod_eq_iff prod_case_beta not_less le_div_geq le_mod_geq)
text {* Simproc for cancelling @{const div} and @{const mod} *}
ML_file "~~/src/Provers/Arith/cancel_div_mod.ML"
ML {*
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
(
val div_name = @{const_name div};
val mod_name = @{const_name mod};
val mk_binop = HOLogic.mk_binop;
val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;
fun mk_sum [] = HOLogic.zero
| mk_sum [t] = t
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
fun dest_sum tm =
if HOLogic.is_zero tm then []
else
(case try HOLogic.dest_Suc tm of
SOME t => HOLogic.Suc_zero :: dest_sum t
| NONE =>
(case try dest_plus tm of
SOME (t, u) => dest_sum t @ dest_sum u
| NONE => [tm]));
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
(@{thm add_0_left} :: @{thm add_0_right} :: @{thms add_ac}))
)
*}
simproc_setup cancel_div_mod_nat ("(m::nat) + n") = {* K Cancel_Div_Mod_Nat.proc *}
subsubsection {* Quotient *}
lemma div_geq: "0 < n \<Longrightarrow> \<not> m < n \<Longrightarrow> m div n = Suc ((m - n) div n)"
by (simp add: le_div_geq linorder_not_less)
lemma div_if: "0 < n \<Longrightarrow> m div n = (if m < n then 0 else Suc ((m - n) div n))"
by (simp add: div_geq)
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
by simp
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
by simp
subsubsection {* Remainder *}
lemma mod_less_divisor [simp]:
fixes m n :: nat
assumes "n > 0"
shows "m mod n < (n::nat)"
using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto
lemma mod_Suc_le_divisor [simp]:
"m mod Suc n \<le> n"
using mod_less_divisor [of "Suc n" m] by arith
lemma mod_less_eq_dividend [simp]:
fixes m n :: nat
shows "m mod n \<le> m"
proof (rule add_leD2)
from mod_div_equality have "m div n * n + m mod n = m" .
then show "m div n * n + m mod n \<le> m" by auto
qed
lemma mod_geq: "\<not> m < (n\<Colon>nat) \<Longrightarrow> m mod n = (m - n) mod n"
by (simp add: le_mod_geq linorder_not_less)
lemma mod_if: "m mod (n\<Colon>nat) = (if m < n then m else (m - n) mod n)"
by (simp add: le_mod_geq)
lemma mod_1 [simp]: "m mod Suc 0 = 0"
by (induct m) (simp_all add: mod_geq)
(* a simple rearrangement of mod_div_equality: *)
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
using mod_div_equality2 [of n m] by arith
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
apply (drule mod_less_divisor [where m = m])
apply simp
done
subsubsection {* Quotient and Remainder *}
lemma divmod_nat_rel_mult1_eq:
"divmod_nat_rel b c (q, r)
\<Longrightarrow> divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)"
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
lemma div_mult1_eq:
"(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)"
by (blast intro: divmod_nat_rel_mult1_eq [THEN div_nat_unique] divmod_nat_rel)
lemma divmod_nat_rel_add1_eq:
"divmod_nat_rel a c (aq, ar) \<Longrightarrow> divmod_nat_rel b c (bq, br)
\<Longrightarrow> divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)"
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
lemma div_add1_eq:
"(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel)
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
apply (cut_tac m = q and n = c in mod_less_divisor)
apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
apply (simp add: add_mult_distrib2)
done
lemma divmod_nat_rel_mult2_eq:
"divmod_nat_rel a b (q, r)
\<Longrightarrow> divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)"
by (auto simp add: mult_ac divmod_nat_rel_def add_mult_distrib2 [symmetric] mod_lemma)
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique])
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
by (auto simp add: mult_commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_nat_unique])
subsubsection {* Further Facts about Quotient and Remainder *}
lemma div_1 [simp]: "m div Suc 0 = m"
by (induct m) (simp_all add: div_geq)
(* Monotonicity of div in first argument *)
lemma div_le_mono [rule_format (no_asm)]:
"\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
apply (case_tac "k=0", simp)
apply (induct "n" rule: nat_less_induct, clarify)
apply (case_tac "n<k")
(* 1 case n<k *)
apply simp
(* 2 case n >= k *)
apply (case_tac "m<k")
(* 2.1 case m<k *)
apply simp
(* 2.2 case m>=k *)
apply (simp add: div_geq diff_le_mono)
done
(* Antimonotonicity of div in second argument *)
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
apply (subgoal_tac "0<n")
prefer 2 apply simp
apply (induct_tac k rule: nat_less_induct)
apply (rename_tac "k")
apply (case_tac "k<n", simp)
apply (subgoal_tac "~ (k<m) ")
prefer 2 apply simp
apply (simp add: div_geq)
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
prefer 2
apply (blast intro: div_le_mono diff_le_mono2)
apply (rule le_trans, simp)
apply (simp)
done
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
apply (case_tac "n=0", simp)
apply (subgoal_tac "m div n \<le> m div 1", simp)
apply (rule div_le_mono2)
apply (simp_all (no_asm_simp))
done
(* Similar for "less than" *)
lemma div_less_dividend [simp]:
"\<lbrakk>(1::nat) < n; 0 < m\<rbrakk> \<Longrightarrow> m div n < m"
apply (induct m rule: nat_less_induct)
apply (rename_tac "m")
apply (case_tac "m<n", simp)
apply (subgoal_tac "0<n")
prefer 2 apply simp
apply (simp add: div_geq)
apply (case_tac "n<m")
apply (subgoal_tac "(m-n) div n < (m-n) ")
apply (rule impI less_trans_Suc)+
apply assumption
apply (simp_all)
done
text{*A fact for the mutilated chess board*}
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
apply (case_tac "n=0", simp)
apply (induct "m" rule: nat_less_induct)
apply (case_tac "Suc (na) <n")
(* case Suc(na) < n *)
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
(* case n \<le> Suc(na) *)
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
apply (auto simp add: Suc_diff_le le_mod_geq)
done
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
(*Loses information, namely we also have r<d provided d is nonzero*)
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
apply (cut_tac a = m in mod_div_equality)
apply (simp only: add_ac)
apply (blast intro: sym)
done
lemma split_div:
"P(n div k :: nat) =
((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
proof
assume P: ?P
show ?Q
proof (cases)
assume "k = 0"
with P show ?Q by simp
next
assume not0: "k \<noteq> 0"
thus ?Q
proof (simp, intro allI impI)
fix i j
assume n: "n = k*i + j" and j: "j < k"
show "P i"
proof (cases)
assume "i = 0"
with n j P show "P i" by simp
next
assume "i \<noteq> 0"
with not0 n j P show "P i" by(simp add:add_ac)
qed
qed
qed
next
assume Q: ?Q
show ?P
proof (cases)
assume "k = 0"
with Q show ?P by simp
next
assume not0: "k \<noteq> 0"
with Q have R: ?R by simp
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
show ?P by simp
qed
qed
lemma split_div_lemma:
assumes "0 < n"
shows "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> q = ((m\<Colon>nat) div n)" (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?rhs
with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp
then have A: "n * q \<le> m" by simp
have "n - (m mod n) > 0" using mod_less_divisor assms by auto
then have "m < m + (n - (m mod n))" by simp
then have "m < n + (m - (m mod n))" by simp
with nq have "m < n + n * q" by simp
then have B: "m < n * Suc q" by simp
from A B show ?lhs ..
next
assume P: ?lhs
then have "divmod_nat_rel m n (q, m - n * q)"
unfolding divmod_nat_rel_def by (auto simp add: mult_ac)
with divmod_nat_rel_unique divmod_nat_rel [of m n]
have "(q, m - n * q) = (m div n, m mod n)" by auto
then show ?rhs by simp
qed
theorem split_div':
"P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
(\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
apply (case_tac "0 < n")
apply (simp only: add: split_div_lemma)
apply simp_all
done
lemma split_mod:
"P(n mod k :: nat) =
((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
proof
assume P: ?P
show ?Q
proof (cases)
assume "k = 0"
with P show ?Q by simp
next
assume not0: "k \<noteq> 0"
thus ?Q
proof (simp, intro allI impI)
fix i j
assume "n = k*i + j" "j < k"
thus "P j" using not0 P by(simp add:add_ac mult_ac)
qed
qed
next
assume Q: ?Q
show ?P
proof (cases)
assume "k = 0"
with Q show ?P by simp
next
assume not0: "k \<noteq> 0"
with Q have R: ?R by simp
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
show ?P by simp
qed
qed
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
using mod_div_equality [of m n] by arith
lemma div_mod_equality': "(m::nat) div n * n = m - m mod n"
using mod_div_equality [of m n] by arith
(* FIXME: very similar to mult_div_cancel *)
subsubsection {* An ``induction'' law for modulus arithmetic. *}
lemma mod_induct_0:
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
and base: "P i" and i: "i<p"
shows "P 0"
proof (rule ccontr)
assume contra: "\<not>(P 0)"
from i have p: "0<p" by simp
have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
proof
fix k
show "?A k"
proof (induct k)
show "?A 0" by simp -- "by contradiction"
next
fix n
assume ih: "?A n"
show "?A (Suc n)"
proof (clarsimp)
assume y: "P (p - Suc n)"
have n: "Suc n < p"
proof (rule ccontr)
assume "\<not>(Suc n < p)"
hence "p - Suc n = 0"
by simp
with y contra show "False"
by simp
qed
hence n2: "Suc (p - Suc n) = p-n" by arith
from p have "p - Suc n < p" by arith
with y step have z: "P ((Suc (p - Suc n)) mod p)"
by blast
show "False"
proof (cases "n=0")
case True
with z n2 contra show ?thesis by simp
next
case False
with p have "p-n < p" by arith
with z n2 False ih show ?thesis by simp
qed
qed
qed
qed
moreover
from i obtain k where "0<k \<and> i+k=p"
by (blast dest: less_imp_add_positive)
hence "0<k \<and> i=p-k" by auto
moreover
note base
ultimately
show "False" by blast
qed
lemma mod_induct:
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
and base: "P i" and i: "i<p" and j: "j<p"
shows "P j"
proof -
have "\<forall>j<p. P j"
proof
fix j
show "j<p \<longrightarrow> P j" (is "?A j")
proof (induct j)
from step base i show "?A 0"
by (auto elim: mod_induct_0)
next
fix k
assume ih: "?A k"
show "?A (Suc k)"
proof
assume suc: "Suc k < p"
hence k: "k<p" by simp
with ih have "P k" ..
with step k have "P (Suc k mod p)"
by blast
moreover
from suc have "Suc k mod p = Suc k"
by simp
ultimately
show "P (Suc k)" by simp
qed
qed
qed
with j show ?thesis by blast
qed
lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)"
by (simp add: numeral_2_eq_2 le_div_geq)
lemma mod2_Suc_Suc [simp]: "Suc (Suc m) mod 2 = m mod 2"
by (simp add: numeral_2_eq_2 le_mod_geq)
lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
by (simp add: mult_2 [symmetric])
lemma mod2_gr_0 [simp]: "0 < (m\<Colon>nat) mod 2 \<longleftrightarrow> m mod 2 = 1"
proof -
{ fix n :: nat have "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (cases n) simp_all }
moreover have "m mod 2 < 2" by simp
ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" .
then show ?thesis by auto
qed
text{*These lemmas collapse some needless occurrences of Suc:
at least three Sucs, since two and fewer are rewritten back to Suc again!
We already have some rules to simplify operands smaller than 3.*}
lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
by (simp add: Suc3_eq_add_3)
lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
by (simp add: Suc3_eq_add_3)
lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
by (simp add: Suc3_eq_add_3)
lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
by (simp add: Suc3_eq_add_3)
lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v
lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v
lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1"
apply (induct "m")
apply (simp_all add: mod_Suc)
done
declare Suc_times_mod_eq [of "numeral w", simp] for w
lemma Suc_div_le_mono [simp]: "n div k \<le> (Suc n) div k"
by (simp add: div_le_mono)
lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
by (cases n) simp_all
lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2"
proof -
from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all
from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp
qed
(* Potential use of algebra : Equality modulo n*)
lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"
by (simp add: mult_ac add_ac)
lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
proof -
have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
also have "... = Suc m mod n" by (rule mod_mult_self3)
finally show ?thesis .
qed
lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
apply (subst mod_Suc [of m])
apply (subst mod_Suc [of "m mod n"], simp)
done
lemma mod_2_not_eq_zero_eq_one_nat:
fixes n :: nat
shows "n mod 2 \<noteq> 0 \<longleftrightarrow> n mod 2 = 1"
by simp
subsection {* Division on @{typ int} *}
definition divmod_int_rel :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool" where
--{*definition of quotient and remainder*}
"divmod_int_rel a b = (\<lambda>(q, r). a = b * q + r \<and>
(if 0 < b then 0 \<le> r \<and> r < b else if b < 0 then b < r \<and> r \<le> 0 else q = 0))"
definition adjust :: "int \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int" where
--{*for the division algorithm*}
"adjust b = (\<lambda>(q, r). if 0 \<le> r - b then (2 * q + 1, r - b)
else (2 * q, r))"
text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
function posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
"posDivAlg a b = (if a < b \<or> b \<le> 0 then (0, a)
else adjust b (posDivAlg a (2 * b)))"
by auto
termination by (relation "measure (\<lambda>(a, b). nat (a - b + 1))")
(auto simp add: mult_2)
text{*algorithm for the case @{text "a<0, b>0"}*}
function negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
"negDivAlg a b = (if 0 \<le>a + b \<or> b \<le> 0 then (-1, a + b)
else adjust b (negDivAlg a (2 * b)))"
by auto
termination by (relation "measure (\<lambda>(a, b). nat (- a - b))")
(auto simp add: mult_2)
text{*algorithm for the general case @{term "b\<noteq>0"}*}
definition divmod_int :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
--{*The full division algorithm considers all possible signs for a, b
including the special case @{text "a=0, b<0"} because
@{term negDivAlg} requires @{term "a<0"}.*}
"divmod_int a b = (if 0 \<le> a then if 0 \<le> b then posDivAlg a b
else if a = 0 then (0, 0)
else apsnd uminus (negDivAlg (-a) (-b))
else
if 0 < b then negDivAlg a b
else apsnd uminus (posDivAlg (-a) (-b)))"
instantiation int :: Divides.div
begin
definition div_int where
"a div b = fst (divmod_int a b)"
lemma fst_divmod_int [simp]:
"fst (divmod_int a b) = a div b"
by (simp add: div_int_def)
definition mod_int where
"a mod b = snd (divmod_int a b)"
lemma snd_divmod_int [simp]:
"snd (divmod_int a b) = a mod b"
by (simp add: mod_int_def)
instance ..
end
lemma divmod_int_mod_div:
"divmod_int p q = (p div q, p mod q)"
by (simp add: prod_eq_iff)
text{*
Here is the division algorithm in ML:
\begin{verbatim}
fun posDivAlg (a,b) =
if a<b then (0,a)
else let val (q,r) = posDivAlg(a, 2*b)
in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
end
fun negDivAlg (a,b) =
if 0\<le>a+b then (~1,a+b)
else let val (q,r) = negDivAlg(a, 2*b)
in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
end;
fun negateSnd (q,r:int) = (q,~r);
fun divmod (a,b) = if 0\<le>a then
if b>0 then posDivAlg (a,b)
else if a=0 then (0,0)
else negateSnd (negDivAlg (~a,~b))
else
if 0<b then negDivAlg (a,b)
else negateSnd (posDivAlg (~a,~b));
\end{verbatim}
*}
subsubsection {* Uniqueness and Monotonicity of Quotients and Remainders *}
lemma unique_quotient_lemma:
"[| b*q' + r' \<le> b*q + r; 0 \<le> r'; r' < b; r < b |]
==> q' \<le> (q::int)"
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
prefer 2 apply (simp add: right_diff_distrib)
apply (subgoal_tac "0 < b * (1 + q - q') ")
apply (erule_tac [2] order_le_less_trans)
prefer 2 apply (simp add: right_diff_distrib distrib_left)
apply (subgoal_tac "b * q' < b * (1 + q) ")
prefer 2 apply (simp add: right_diff_distrib distrib_left)
apply (simp add: mult_less_cancel_left)
done
lemma unique_quotient_lemma_neg:
"[| b*q' + r' \<le> b*q + r; r \<le> 0; b < r; b < r' |]
==> q \<le> (q'::int)"
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma,
auto)
lemma unique_quotient:
"[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |]
==> q = q'"
apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm)
apply (blast intro: order_antisym
dest: order_eq_refl [THEN unique_quotient_lemma]
order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
done
lemma unique_remainder:
"[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |]
==> r = r'"
apply (subgoal_tac "q = q'")
apply (simp add: divmod_int_rel_def)
apply (blast intro: unique_quotient)
done
subsubsection {* Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends *}
text{*And positive divisors*}
lemma adjust_eq [simp]:
"adjust b (q, r) =
(let diff = r - b in
if 0 \<le> diff then (2 * q + 1, diff)
else (2*q, r))"
by (simp add: Let_def adjust_def)
declare posDivAlg.simps [simp del]
text{*use with a simproc to avoid repeatedly proving the premise*}
lemma posDivAlg_eqn:
"0 < b ==>
posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))"
by (rule posDivAlg.simps [THEN trans], simp)
text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
theorem posDivAlg_correct:
assumes "0 \<le> a" and "0 < b"
shows "divmod_int_rel a b (posDivAlg a b)"
using assms
apply (induct a b rule: posDivAlg.induct)
apply auto
apply (simp add: divmod_int_rel_def)
apply (subst posDivAlg_eqn, simp add: distrib_left)
apply (case_tac "a < b")
apply simp_all
apply (erule splitE)
apply (auto simp add: distrib_left Let_def mult_ac mult_2_right)
done
subsubsection {* Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends *}
text{*And positive divisors*}
declare negDivAlg.simps [simp del]
text{*use with a simproc to avoid repeatedly proving the premise*}
lemma negDivAlg_eqn:
"0 < b ==>
negDivAlg a b =
(if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))"
by (rule negDivAlg.simps [THEN trans], simp)
(*Correctness of negDivAlg: it computes quotients correctly
It doesn't work if a=0 because the 0/b equals 0, not -1*)
lemma negDivAlg_correct:
assumes "a < 0" and "b > 0"
shows "divmod_int_rel a b (negDivAlg a b)"
using assms
apply (induct a b rule: negDivAlg.induct)
apply (auto simp add: linorder_not_le)
apply (simp add: divmod_int_rel_def)
apply (subst negDivAlg_eqn, assumption)
apply (case_tac "a + b < (0\<Colon>int)")
apply simp_all
apply (erule splitE)
apply (auto simp add: distrib_left Let_def mult_ac mult_2_right)
done
subsubsection {* Existence Shown by Proving the Division Algorithm to be Correct *}
(*the case a=0*)
lemma divmod_int_rel_0: "divmod_int_rel 0 b (0, 0)"
by (auto simp add: divmod_int_rel_def linorder_neq_iff)
lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)"
by (subst posDivAlg.simps, auto)
lemma posDivAlg_0_right [simp]: "posDivAlg a 0 = (0, a)"
by (subst posDivAlg.simps, auto)
lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)"
by (subst negDivAlg.simps, auto)
lemma divmod_int_rel_neg: "divmod_int_rel (-a) (-b) qr ==> divmod_int_rel a b (apsnd uminus qr)"
by (auto simp add: divmod_int_rel_def)
lemma divmod_int_correct: "divmod_int_rel a b (divmod_int a b)"
apply (cases "b = 0", simp add: divmod_int_def divmod_int_rel_def)
by (force simp add: linorder_neq_iff divmod_int_rel_0 divmod_int_def divmod_int_rel_neg
posDivAlg_correct negDivAlg_correct)
lemma divmod_int_unique:
assumes "divmod_int_rel a b qr"
shows "divmod_int a b = qr"
using assms divmod_int_correct [of a b]
using unique_quotient [of a b] unique_remainder [of a b]
by (metis pair_collapse)
lemma divmod_int_rel_div_mod: "divmod_int_rel a b (a div b, a mod b)"
using divmod_int_correct by (simp add: divmod_int_mod_div)
lemma div_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a div b = q"
by (simp add: divmod_int_rel_div_mod [THEN unique_quotient])
lemma mod_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a mod b = r"
by (simp add: divmod_int_rel_div_mod [THEN unique_remainder])
instance int :: ring_div
proof
fix a b :: int
show "a div b * b + a mod b = a"
using divmod_int_rel_div_mod [of a b]
unfolding divmod_int_rel_def by (simp add: mult_commute)
next
fix a b c :: int
assume "b \<noteq> 0"
hence "divmod_int_rel (a + c * b) b (c + a div b, a mod b)"
using divmod_int_rel_div_mod [of a b]
unfolding divmod_int_rel_def by (auto simp: algebra_simps)
thus "(a + c * b) div b = c + a div b"
by (rule div_int_unique)
next
fix a b c :: int
assume "c \<noteq> 0"
hence "\<And>q r. divmod_int_rel a b (q, r)
\<Longrightarrow> divmod_int_rel (c * a) (c * b) (q, c * r)"
unfolding divmod_int_rel_def
by - (rule linorder_cases [of 0 b], auto simp: algebra_simps
mult_less_0_iff zero_less_mult_iff mult_strict_right_mono
mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff)
hence "divmod_int_rel (c * a) (c * b) (a div b, c * (a mod b))"
using divmod_int_rel_div_mod [of a b] .
thus "(c * a) div (c * b) = a div b"
by (rule div_int_unique)
next
fix a :: int show "a div 0 = 0"
by (rule div_int_unique, simp add: divmod_int_rel_def)
next
fix a :: int show "0 div a = 0"
by (rule div_int_unique, auto simp add: divmod_int_rel_def)
qed
text{*Basic laws about division and remainder*}
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
by (fact mod_div_equality2 [symmetric])
text {* Tool setup *}
(* FIXME: Theorem list add_0s doesn't exist, because Numeral0 has gone. *)
lemmas add_0s = add_0_left add_0_right
ML {*
structure Cancel_Div_Mod_Int = Cancel_Div_Mod
(
val div_name = @{const_name div};
val mod_name = @{const_name mod};
val mk_binop = HOLogic.mk_binop;
val mk_sum = Arith_Data.mk_sum HOLogic.intT;
val dest_sum = Arith_Data.dest_sum;
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
(@{thm diff_minus} :: @{thms add_0s} @ @{thms add_ac}))
)
*}
simproc_setup cancel_div_mod_int ("(k::int) + l") = {* K Cancel_Div_Mod_Int.proc *}
lemma pos_mod_conj: "(0::int) < b \<Longrightarrow> 0 \<le> a mod b \<and> a mod b < b"
using divmod_int_correct [of a b]
by (auto simp add: divmod_int_rel_def prod_eq_iff)
lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1]
and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2]
lemma neg_mod_conj: "b < (0::int) \<Longrightarrow> a mod b \<le> 0 \<and> b < a mod b"
using divmod_int_correct [of a b]
by (auto simp add: divmod_int_rel_def prod_eq_iff)
lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1]
and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2]
subsubsection {* General Properties of div and mod *}
lemma div_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a div b = 0"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma div_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a div b = 0"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a div b = -1"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
(*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*)
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a mod b = a"
apply (rule_tac q = 0 in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma mod_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a mod b = a"
apply (rule_tac q = 0 in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a mod b = a+b"
apply (rule_tac q = "-1" in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
text{*There is no @{text mod_neg_pos_trivial}.*}
subsubsection {* Laws for div and mod with Unary Minus *}
lemma zminus1_lemma:
"divmod_int_rel a b (q, r) ==> b \<noteq> 0
==> divmod_int_rel (-a) b (if r=0 then -q else -q - 1,
if r=0 then 0 else b-r)"
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_diff_distrib)
lemma zdiv_zminus1_eq_if:
"b \<noteq> (0::int)
==> (-a) div b =
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
by (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN div_int_unique])
lemma zmod_zminus1_eq_if:
"(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))"
apply (case_tac "b = 0", simp)
apply (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN mod_int_unique])
done
lemma zmod_zminus1_not_zero:
fixes k l :: int
shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
unfolding zmod_zminus1_eq_if by auto
lemma zdiv_zminus2_eq_if:
"b \<noteq> (0::int)
==> a div (-b) =
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
by (simp add: zdiv_zminus1_eq_if div_minus_right)
lemma zmod_zminus2_eq_if:
"a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)"
by (simp add: zmod_zminus1_eq_if mod_minus_right)
lemma zmod_zminus2_not_zero:
fixes k l :: int
shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
unfolding zmod_zminus2_eq_if by auto
subsubsection {* Computation of Division and Remainder *}
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
by (simp add: div_int_def divmod_int_def)
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
by (simp add: mod_int_def divmod_int_def)
text{*a positive, b positive *}
lemma div_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a div b = fst (posDivAlg a b)"
by (simp add: div_int_def divmod_int_def)
lemma mod_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a mod b = snd (posDivAlg a b)"
by (simp add: mod_int_def divmod_int_def)
text{*a negative, b positive *}
lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg a b)"
by (simp add: div_int_def divmod_int_def)
lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg a b)"
by (simp add: mod_int_def divmod_int_def)
text{*a positive, b negative *}
lemma div_pos_neg:
"[| 0 < a; b < 0 |] ==> a div b = fst (apsnd uminus (negDivAlg (-a) (-b)))"
by (simp add: div_int_def divmod_int_def)
lemma mod_pos_neg:
"[| 0 < a; b < 0 |] ==> a mod b = snd (apsnd uminus (negDivAlg (-a) (-b)))"
by (simp add: mod_int_def divmod_int_def)
text{*a negative, b negative *}
lemma div_neg_neg:
"[| a < 0; b \<le> 0 |] ==> a div b = fst (apsnd uminus (posDivAlg (-a) (-b)))"
by (simp add: div_int_def divmod_int_def)
lemma mod_neg_neg:
"[| a < 0; b \<le> 0 |] ==> a mod b = snd (apsnd uminus (posDivAlg (-a) (-b)))"
by (simp add: mod_int_def divmod_int_def)
text {*Simplify expresions in which div and mod combine numerical constants*}
lemma int_div_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a div b = q"
by (rule div_int_unique [of a b q r]) (simp add: divmod_int_rel_def)
lemma int_div_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a div b = q"
by (rule div_int_unique [of a b q r],
simp add: divmod_int_rel_def)
lemma int_mod_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a mod b = r"
by (rule mod_int_unique [of a b q r],
simp add: divmod_int_rel_def)
lemma int_mod_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a mod b = r"
by (rule mod_int_unique [of a b q r],
simp add: divmod_int_rel_def)
(* simprocs adapted from HOL/ex/Binary.thy *)
ML {*
local
val mk_number = HOLogic.mk_number HOLogic.intT
val plus = @{term "plus :: int \<Rightarrow> int \<Rightarrow> int"}
val times = @{term "times :: int \<Rightarrow> int \<Rightarrow> int"}
val zero = @{term "0 :: int"}
val less = @{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"}
val le = @{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"}
val simps = @{thms arith_simps} @ @{thms rel_simps} @
map (fn th => th RS sym) [@{thm numeral_1_eq_1}]
fun prove ctxt goal = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop goal)
(K (ALLGOALS (full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps simps))));
fun binary_proc proc ctxt ct =
(case Thm.term_of ct of
_ $ t $ u =>
(case try (pairself (`(snd o HOLogic.dest_number))) (t, u) of
SOME args => proc ctxt args
| NONE => NONE)
| _ => NONE);
in
fun divmod_proc posrule negrule =
binary_proc (fn ctxt => fn ((a, t), (b, u)) =>
if b = 0 then NONE else let
val (q, r) = pairself mk_number (Integer.div_mod a b)
val goal1 = HOLogic.mk_eq (t, plus $ (times $ u $ q) $ r)
val (goal2, goal3, rule) = if b > 0
then (le $ zero $ r, less $ r $ u, posrule RS eq_reflection)
else (le $ r $ zero, less $ u $ r, negrule RS eq_reflection)
in SOME (rule OF map (prove ctxt) [goal1, goal2, goal3]) end)
end
*}
simproc_setup binary_int_div
("numeral m div numeral n :: int" |
"numeral m div neg_numeral n :: int" |
"neg_numeral m div numeral n :: int" |
"neg_numeral m div neg_numeral n :: int") =
{* K (divmod_proc @{thm int_div_pos_eq} @{thm int_div_neg_eq}) *}
simproc_setup binary_int_mod
("numeral m mod numeral n :: int" |
"numeral m mod neg_numeral n :: int" |
"neg_numeral m mod numeral n :: int" |
"neg_numeral m mod neg_numeral n :: int") =
{* K (divmod_proc @{thm int_mod_pos_eq} @{thm int_mod_neg_eq}) *}
lemmas posDivAlg_eqn_numeral [simp] =
posDivAlg_eqn [of "numeral v" "numeral w", OF zero_less_numeral] for v w
lemmas negDivAlg_eqn_numeral [simp] =
negDivAlg_eqn [of "numeral v" "neg_numeral w", OF zero_less_numeral] for v w
text{*Special-case simplification *}
(** The last remaining special cases for constant arithmetic:
1 div z and 1 mod z **)
lemmas div_pos_pos_1_numeral [simp] =
div_pos_pos [OF zero_less_one, of "numeral w", OF zero_le_numeral] for w
lemmas div_pos_neg_1_numeral [simp] =
div_pos_neg [OF zero_less_one, of "neg_numeral w",
OF neg_numeral_less_zero] for w
lemmas mod_pos_pos_1_numeral [simp] =
mod_pos_pos [OF zero_less_one, of "numeral w", OF zero_le_numeral] for w
lemmas mod_pos_neg_1_numeral [simp] =
mod_pos_neg [OF zero_less_one, of "neg_numeral w",
OF neg_numeral_less_zero] for w
lemmas posDivAlg_eqn_1_numeral [simp] =
posDivAlg_eqn [of concl: 1 "numeral w", OF zero_less_numeral] for w
lemmas negDivAlg_eqn_1_numeral [simp] =
negDivAlg_eqn [of concl: 1 "numeral w", OF zero_less_numeral] for w
subsubsection {* Monotonicity in the First Argument (Dividend) *}
lemma zdiv_mono1: "[| a \<le> a'; 0 < (b::int) |] ==> a div b \<le> a' div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
apply (rule unique_quotient_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
lemma zdiv_mono1_neg: "[| a \<le> a'; (b::int) < 0 |] ==> a' div b \<le> a div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
apply (rule unique_quotient_lemma_neg)
apply (erule subst)
apply (erule subst, simp_all)
done
subsubsection {* Monotonicity in the Second Argument (Divisor) *}
lemma q_pos_lemma:
"[| 0 \<le> b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \<le> (q'::int)"
apply (subgoal_tac "0 < b'* (q' + 1) ")
apply (simp add: zero_less_mult_iff)
apply (simp add: distrib_left)
done
lemma zdiv_mono2_lemma:
"[| b*q + r = b'*q' + r'; 0 \<le> b'*q' + r';
r' < b'; 0 \<le> r; 0 < b'; b' \<le> b |]
==> q \<le> (q'::int)"
apply (frule q_pos_lemma, assumption+)
apply (subgoal_tac "b*q < b* (q' + 1) ")
apply (simp add: mult_less_cancel_left)
apply (subgoal_tac "b*q = r' - r + b'*q'")
prefer 2 apply simp
apply (simp (no_asm_simp) add: distrib_left)
apply (subst add_commute, rule add_less_le_mono, arith)
apply (rule mult_right_mono, auto)
done
lemma zdiv_mono2:
"[| (0::int) \<le> a; 0 < b'; b' \<le> b |] ==> a div b \<le> a div b'"
apply (subgoal_tac "b \<noteq> 0")
prefer 2 apply arith
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
apply (rule zdiv_mono2_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
lemma q_neg_lemma:
"[| b'*q' + r' < 0; 0 \<le> r'; 0 < b' |] ==> q' \<le> (0::int)"
apply (subgoal_tac "b'*q' < 0")
apply (simp add: mult_less_0_iff, arith)
done
lemma zdiv_mono2_neg_lemma:
"[| b*q + r = b'*q' + r'; b'*q' + r' < 0;
r < b; 0 \<le> r'; 0 < b'; b' \<le> b |]
==> q' \<le> (q::int)"
apply (frule q_neg_lemma, assumption+)
apply (subgoal_tac "b*q' < b* (q + 1) ")
apply (simp add: mult_less_cancel_left)
apply (simp add: distrib_left)
apply (subgoal_tac "b*q' \<le> b'*q'")
prefer 2 apply (simp add: mult_right_mono_neg, arith)
done
lemma zdiv_mono2_neg:
"[| a < (0::int); 0 < b'; b' \<le> b |] ==> a div b' \<le> a div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
apply (rule zdiv_mono2_neg_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
subsubsection {* More Algebraic Laws for div and mod *}
text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
lemma zmult1_lemma:
"[| divmod_int_rel b c (q, r) |]
==> divmod_int_rel (a * b) c (a*q + a*r div c, a*r mod c)"
by (auto simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left mult_ac)
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
apply (case_tac "c = 0", simp)
apply (blast intro: divmod_int_rel_div_mod [THEN zmult1_lemma, THEN div_int_unique])
done
text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
lemma zadd1_lemma:
"[| divmod_int_rel a c (aq, ar); divmod_int_rel b c (bq, br) |]
==> divmod_int_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)"
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left)
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
lemma zdiv_zadd1_eq:
"(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
apply (case_tac "c = 0", simp)
apply (blast intro: zadd1_lemma [OF divmod_int_rel_div_mod divmod_int_rel_div_mod] div_int_unique)
done
lemma posDivAlg_div_mod:
assumes "k \<ge> 0"
and "l \<ge> 0"
shows "posDivAlg k l = (k div l, k mod l)"
proof (cases "l = 0")
case True then show ?thesis by (simp add: posDivAlg.simps)
next
case False with assms posDivAlg_correct
have "divmod_int_rel k l (fst (posDivAlg k l), snd (posDivAlg k l))"
by simp
from div_int_unique [OF this] mod_int_unique [OF this]
show ?thesis by simp
qed
lemma negDivAlg_div_mod:
assumes "k < 0"
and "l > 0"
shows "negDivAlg k l = (k div l, k mod l)"
proof -
from assms have "l \<noteq> 0" by simp
from assms negDivAlg_correct
have "divmod_int_rel k l (fst (negDivAlg k l), snd (negDivAlg k l))"
by simp
from div_int_unique [OF this] mod_int_unique [OF this]
show ?thesis by simp
qed
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
(* REVISIT: should this be generalized to all semiring_div types? *)
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
lemma zmod_zdiv_equality':
"(m\<Colon>int) mod n = m - (m div n) * n"
using mod_div_equality [of m n] by arith
subsubsection {* Proving @{term "a div (b*c) = (a div b) div c"} *}
(*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but
7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems
to cause particular problems.*)
text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \<le> 0 |] ==> b*c < b*(q mod c) + r"
apply (subgoal_tac "b * (c - q mod c) < r * 1")
apply (simp add: algebra_simps)
apply (rule order_le_less_trans)
apply (erule_tac [2] mult_strict_right_mono)
apply (rule mult_left_mono_neg)
using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps)
apply (simp)
apply (simp)
done
lemma zmult2_lemma_aux2:
"[| (0::int) < c; b < r; r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
apply (subgoal_tac "b * (q mod c) \<le> 0")
apply arith
apply (simp add: mult_le_0_iff)
done
lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \<le> r; r < b |] ==> 0 \<le> b * (q mod c) + r"
apply (subgoal_tac "0 \<le> b * (q mod c) ")
apply arith
apply (simp add: zero_le_mult_iff)
done
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
apply (simp add: right_diff_distrib)
apply (rule order_less_le_trans)
apply (erule mult_strict_right_mono)
apply (rule_tac [2] mult_left_mono)
apply simp
using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps)
apply simp
done
lemma zmult2_lemma: "[| divmod_int_rel a b (q, r); 0 < c |]
==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)"
by (auto simp add: mult_ac divmod_int_rel_def linorder_neq_iff
zero_less_mult_iff distrib_left [symmetric]
zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: split_if_asm)
lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c"
apply (case_tac "b = 0", simp)
apply (force simp add: divmod_int_rel_div_mod [THEN zmult2_lemma, THEN div_int_unique])
done
lemma zmod_zmult2_eq:
"(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b"
apply (case_tac "b = 0", simp)
apply (force simp add: divmod_int_rel_div_mod [THEN zmult2_lemma, THEN mod_int_unique])
done
lemma div_pos_geq:
fixes k l :: int
assumes "0 < l" and "l \<le> k"
shows "k div l = (k - l) div l + 1"
proof -
have "k = (k - l) + l" by simp
then obtain j where k: "k = j + l" ..
with assms show ?thesis by simp
qed
lemma mod_pos_geq:
fixes k l :: int
assumes "0 < l" and "l \<le> k"
shows "k mod l = (k - l) mod l"
proof -
have "k = (k - l) + l" by simp
then obtain j where k: "k = j + l" ..
with assms show ?thesis by simp
qed
subsubsection {* Splitting Rules for div and mod *}
text{*The proofs of the two lemmas below are essentially identical*}
lemma split_pos_lemma:
"0<k ==>
P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
apply (rule iffI, clarify)
apply (erule_tac P="P ?x ?y" in rev_mp)
apply (subst mod_add_eq)
apply (subst zdiv_zadd1_eq)
apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)
txt{*converse direction*}
apply (drule_tac x = "n div k" in spec)
apply (drule_tac x = "n mod k" in spec, simp)
done
lemma split_neg_lemma:
"k<0 ==>
P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
apply (rule iffI, clarify)
apply (erule_tac P="P ?x ?y" in rev_mp)
apply (subst mod_add_eq)
apply (subst zdiv_zadd1_eq)
apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)
txt{*converse direction*}
apply (drule_tac x = "n div k" in spec)
apply (drule_tac x = "n mod k" in spec, simp)
done
lemma split_zdiv:
"P(n div k :: int) =
((k = 0 --> P 0) &
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) &
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
apply (case_tac "k=0", simp)
apply (simp only: linorder_neq_iff)
apply (erule disjE)
apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"]
split_neg_lemma [of concl: "%x y. P x"])
done
lemma split_zmod:
"P(n mod k :: int) =
((k = 0 --> P n) &
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) &
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
apply (case_tac "k=0", simp)
apply (simp only: linorder_neq_iff)
apply (erule disjE)
apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"]
split_neg_lemma [of concl: "%x y. P y"])
done
text {* Enable (lin)arith to deal with @{const div} and @{const mod}
when these are applied to some constant that is of the form
@{term "numeral k"}: *}
declare split_zdiv [of _ _ "numeral k", arith_split] for k
declare split_zmod [of _ _ "numeral k", arith_split] for k
subsubsection {* Computing @{text "div"} and @{text "mod"} with shifting *}
lemma pos_divmod_int_rel_mult_2:
assumes "0 \<le> b"
assumes "divmod_int_rel a b (q, r)"
shows "divmod_int_rel (1 + 2*a) (2*b) (q, 1 + 2*r)"
using assms unfolding divmod_int_rel_def by auto
lemma neg_divmod_int_rel_mult_2:
assumes "b \<le> 0"
assumes "divmod_int_rel (a + 1) b (q, r)"
shows "divmod_int_rel (1 + 2*a) (2*b) (q, 2*r - 1)"
using assms unfolding divmod_int_rel_def by auto
text{*computing div by shifting *}
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
using pos_divmod_int_rel_mult_2 [OF _ divmod_int_rel_div_mod]
by (rule div_int_unique)
lemma neg_zdiv_mult_2:
assumes A: "a \<le> (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a"
using neg_divmod_int_rel_mult_2 [OF A divmod_int_rel_div_mod]
by (rule div_int_unique)
(* FIXME: add rules for negative numerals *)
lemma zdiv_numeral_Bit0 [simp]:
"numeral (Num.Bit0 v) div numeral (Num.Bit0 w) =
numeral v div (numeral w :: int)"
unfolding numeral.simps unfolding mult_2 [symmetric]
by (rule div_mult_mult1, simp)
lemma zdiv_numeral_Bit1 [simp]:
"numeral (Num.Bit1 v) div numeral (Num.Bit0 w) =
(numeral v div (numeral w :: int))"
unfolding numeral.simps
unfolding mult_2 [symmetric] add_commute [of _ 1]
by (rule pos_zdiv_mult_2, simp)
lemma pos_zmod_mult_2:
fixes a b :: int
assumes "0 \<le> a"
shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)"
using pos_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod]
by (rule mod_int_unique)
lemma neg_zmod_mult_2:
fixes a b :: int
assumes "a \<le> 0"
shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1"
using neg_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod]
by (rule mod_int_unique)
(* FIXME: add rules for negative numerals *)
lemma zmod_numeral_Bit0 [simp]:
"numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) =
(2::int) * (numeral v mod numeral w)"
unfolding numeral_Bit0 [of v] numeral_Bit0 [of w]
unfolding mult_2 [symmetric] by (rule mod_mult_mult1)
lemma zmod_numeral_Bit1 [simp]:
"numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) =
2 * (numeral v mod numeral w) + (1::int)"
unfolding numeral_Bit1 [of v] numeral_Bit0 [of w]
unfolding mult_2 [symmetric] add_commute [of _ 1]
by (rule pos_zmod_mult_2, simp)
lemma zdiv_eq_0_iff:
"(i::int) div k = 0 \<longleftrightarrow> k=0 \<or> 0\<le>i \<and> i<k \<or> i\<le>0 \<and> k<i" (is "?L = ?R")
proof
assume ?L
have "?L \<longrightarrow> ?R" by (rule split_zdiv[THEN iffD2]) simp
with `?L` show ?R by blast
next
assume ?R thus ?L
by(auto simp: div_pos_pos_trivial div_neg_neg_trivial)
qed
subsubsection {* Quotients of Signs *}
lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0"
apply (subgoal_tac "a div b \<le> -1", force)
apply (rule order_trans)
apply (rule_tac a' = "-1" in zdiv_mono1)
apply (auto simp add: div_eq_minus1)
done
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
by (drule zdiv_mono1_neg, auto)
lemma div_nonpos_pos_le0: "[| (a::int) \<le> 0; b > 0 |] ==> a div b \<le> 0"
by (drule zdiv_mono1, auto)
text{* Now for some equivalences of the form @{text"a div b >=< 0 \<longleftrightarrow> \<dots>"}
conditional upon the sign of @{text a} or @{text b}. There are many more.
They should all be simp rules unless that causes too much search. *}
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
apply auto
apply (drule_tac [2] zdiv_mono1)
apply (auto simp add: linorder_neq_iff)
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
apply (blast intro: div_neg_pos_less0)
done
lemma neg_imp_zdiv_nonneg_iff:
"b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
apply (subst div_minus_minus [symmetric])
apply (subst pos_imp_zdiv_nonneg_iff, auto)
done
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
lemma pos_imp_zdiv_pos_iff:
"0<k \<Longrightarrow> 0 < (i::int) div k \<longleftrightarrow> k \<le> i"
using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k]
by arith
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
lemma nonneg1_imp_zdiv_pos_iff:
"(0::int) <= a \<Longrightarrow> (a div b > 0) = (a >= b & b>0)"
apply rule
apply rule
using div_pos_pos_trivial[of a b]apply arith
apply(cases "b=0")apply simp
using div_nonneg_neg_le0[of a b]apply arith
using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp
done
lemma zmod_le_nonneg_dividend: "(m::int) \<ge> 0 ==> m mod k \<le> m"
apply (rule split_zmod[THEN iffD2])
apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le)
done
subsubsection {* The Divides Relation *}
lemma dvd_neg_numeral_left [simp]:
fixes y :: "'a::comm_ring_1"
shows "(neg_numeral k) dvd y \<longleftrightarrow> (numeral k) dvd y"
unfolding neg_numeral_def minus_dvd_iff ..
lemma dvd_neg_numeral_right [simp]:
fixes x :: "'a::comm_ring_1"
shows "x dvd (neg_numeral k) \<longleftrightarrow> x dvd (numeral k)"
unfolding neg_numeral_def dvd_minus_iff ..
lemmas dvd_eq_mod_eq_0_numeral [simp] =
dvd_eq_mod_eq_0 [of "numeral x" "numeral y"] for x y
subsubsection {* Further properties *}
lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)"
using zmod_zdiv_equality[where a="m" and b="n"]
by (simp add: algebra_simps) (* FIXME: generalize *)
lemma zdiv_int: "int (a div b) = (int a) div (int b)"
apply (subst split_div, auto)
apply (subst split_zdiv, auto)
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in unique_quotient)
apply (auto simp add: divmod_int_rel_def of_nat_mult)
done
lemma zmod_int: "int (a mod b) = (int a) mod (int b)"
apply (subst split_mod, auto)
apply (subst split_zmod, auto)
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia
in unique_remainder)
apply (auto simp add: divmod_int_rel_def of_nat_mult)
done
lemma abs_div: "(y::int) dvd x \<Longrightarrow> abs (x div y) = abs x div abs y"
by (unfold dvd_def, cases "y=0", auto simp add: abs_mult)
text{*Suggested by Matthias Daum*}
lemma int_power_div_base:
"\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)")
apply (erule ssubst)
apply (simp only: power_add)
apply simp_all
done
text {* by Brian Huffman *}
lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m"
by (rule mod_minus_eq [symmetric])
lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)"
by (rule mod_diff_left_eq [symmetric])
lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)"
by (rule mod_diff_right_eq [symmetric])
lemmas zmod_simps =
mod_add_left_eq [symmetric]
mod_add_right_eq [symmetric]
mod_mult_right_eq[symmetric]
mod_mult_left_eq [symmetric]
power_mod
zminus_zmod zdiff_zmod_left zdiff_zmod_right
text {* Distributive laws for function @{text nat}. *}
lemma nat_div_distrib: "0 \<le> x \<Longrightarrow> nat (x div y) = nat x div nat y"
apply (rule linorder_cases [of y 0])
apply (simp add: div_nonneg_neg_le0)
apply simp
apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int)
done
(*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*)
lemma nat_mod_distrib:
"\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x mod y) = nat x mod nat y"
apply (case_tac "y = 0", simp)
apply (simp add: nat_eq_iff zmod_int)
done
text {* transfer setup *}
lemma transfer_nat_int_functions:
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)"
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)"
by (auto simp add: nat_div_distrib nat_mod_distrib)
lemma transfer_nat_int_function_closures:
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0"
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0"
apply (cases "y = 0")
apply (auto simp add: pos_imp_zdiv_nonneg_iff)
apply (cases "y = 0")
apply auto
done
declare transfer_morphism_nat_int [transfer add return:
transfer_nat_int_functions
transfer_nat_int_function_closures
]
lemma transfer_int_nat_functions:
"(int x) div (int y) = int (x div y)"
"(int x) mod (int y) = int (x mod y)"
by (auto simp add: zdiv_int zmod_int)
lemma transfer_int_nat_function_closures:
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)"
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)"
by (simp_all only: is_nat_def transfer_nat_int_function_closures)
declare transfer_morphism_int_nat [transfer add return:
transfer_int_nat_functions
transfer_int_nat_function_closures
]
text{*Suggested by Matthias Daum*}
lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)"
apply (subgoal_tac "nat x div nat k < nat x")
apply (simp add: nat_div_distrib [symmetric])
apply (rule Divides.div_less_dividend, simp_all)
done
lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \<longleftrightarrow> n dvd x - y"
proof
assume H: "x mod n = y mod n"
hence "x mod n - y mod n = 0" by simp
hence "(x mod n - y mod n) mod n = 0" by simp
hence "(x - y) mod n = 0" by (simp add: mod_diff_eq[symmetric])
thus "n dvd x - y" by (simp add: dvd_eq_mod_eq_0)
next
assume H: "n dvd x - y"
then obtain k where k: "x-y = n*k" unfolding dvd_def by blast
hence "x = n*k + y" by simp
hence "x mod n = (n*k + y) mod n" by simp
thus "x mod n = y mod n" by (simp add: mod_add_left_eq)
qed
lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y mod n" and xy:"y \<le> x"
shows "\<exists>q. x = y + n * q"
proof-
from xy have th: "int x - int y = int (x - y)" by simp
from xyn have "int x mod int n = int y mod int n"
by (simp add: zmod_int [symmetric])
hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric])
hence "n dvd x - y" by (simp add: th zdvd_int)
then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith
qed
lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)"
(is "?lhs = ?rhs")
proof
assume H: "x mod n = y mod n"
{assume xy: "x \<le> y"
from H have th: "y mod n = x mod n" by simp
from nat_mod_eq_lemma[OF th xy] have ?rhs
apply clarify apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)}
moreover
{assume xy: "y \<le> x"
from nat_mod_eq_lemma[OF H xy] have ?rhs
apply clarify apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)}
ultimately show ?rhs using linear[of x y] by blast
next
assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast
hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp
thus ?lhs by simp
qed
lemma div_nat_numeral [simp]:
"(numeral v :: nat) div numeral v' = nat (numeral v div numeral v')"
by (simp add: nat_div_distrib)
lemma one_div_nat_numeral [simp]:
"Suc 0 div numeral v' = nat (1 div numeral v')"
by (subst nat_div_distrib, simp_all)
lemma mod_nat_numeral [simp]:
"(numeral v :: nat) mod numeral v' = nat (numeral v mod numeral v')"
by (simp add: nat_mod_distrib)
lemma one_mod_nat_numeral [simp]:
"Suc 0 mod numeral v' = nat (1 mod numeral v')"
by (subst nat_mod_distrib) simp_all
lemma mod_2_not_eq_zero_eq_one_int:
fixes k :: int
shows "k mod 2 \<noteq> 0 \<longleftrightarrow> k mod 2 = 1"
by auto
subsubsection {* Tools setup *}
text {* Nitpick *}
lemmas [nitpick_unfold] = dvd_eq_mod_eq_0 mod_div_equality' zmod_zdiv_equality'
subsubsection {* Code generation *}
definition pdivmod :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
"pdivmod k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)"
lemma pdivmod_posDivAlg [code]:
"pdivmod k l = (if l = 0 then (0, \<bar>k\<bar>) else posDivAlg \<bar>k\<bar> \<bar>l\<bar>)"
by (subst posDivAlg_div_mod) (simp_all add: pdivmod_def)
lemma divmod_int_pdivmod: "divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else
apsnd ((op *) (sgn l)) (if 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0
then pdivmod k l
else (let (r, s) = pdivmod k l in
if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
proof -
have aux: "\<And>q::int. - k = l * q \<longleftrightarrow> k = l * - q" by auto
show ?thesis
by (simp add: divmod_int_mod_div pdivmod_def)
(auto simp add: aux not_less not_le zdiv_zminus1_eq_if
zmod_zminus1_eq_if zdiv_zminus2_eq_if zmod_zminus2_eq_if)
qed
lemma divmod_int_code [code]: "divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else
apsnd ((op *) (sgn l)) (if sgn k = sgn l
then pdivmod k l
else (let (r, s) = pdivmod k l in
if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
proof -
have "k \<noteq> 0 \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0 \<longleftrightarrow> sgn k = sgn l"
by (auto simp add: not_less sgn_if)
then show ?thesis by (simp add: divmod_int_pdivmod)
qed
code_modulename SML
Divides Arith
code_modulename OCaml
Divides Arith
code_modulename Haskell
Divides Arith
end