src/HOL/Tools/lin_arith.ML
author wenzelm
Sat, 21 Mar 2009 20:38:49 +0100
changeset 30633 cc18ae3c1c7f
parent 30528 7173bf123335
child 30686 47a32dd1b86e
permissions -rw-r--r--
extra toplevel pretty-printing for Poly/ML; experimental version for Poly/ML 5.3;

(*  Title:      HOL/Tools/lin_arith.ML
    Author:     Tjark Weber and Tobias Nipkow, TU Muenchen

HOL setup for linear arithmetic (see Provers/Arith/fast_lin_arith.ML).
*)

signature BASIC_LIN_ARITH =
sig
  type arith_tactic
  val mk_arith_tactic: string -> (Proof.context -> int -> tactic) -> arith_tactic
  val eq_arith_tactic: arith_tactic * arith_tactic -> bool
  val arith_split_add: attribute
  val arith_discrete: string -> Context.generic -> Context.generic
  val arith_inj_const: string * typ -> Context.generic -> Context.generic
  val arith_tactic_add: arith_tactic -> Context.generic -> Context.generic
  val fast_arith_split_limit: int Config.T
  val fast_arith_neq_limit: int Config.T
  val lin_arith_pre_tac: Proof.context -> int -> tactic
  val fast_arith_tac: Proof.context -> int -> tactic
  val fast_ex_arith_tac: Proof.context -> bool -> int -> tactic
  val trace_arith: bool ref
  val lin_arith_simproc: simpset -> term -> thm option
  val fast_nat_arith_simproc: simproc
  val simple_arith_tac: Proof.context -> int -> tactic
  val arith_tac: Proof.context -> int -> tactic
  val silent_arith_tac: Proof.context -> int -> tactic
end;

signature LIN_ARITH =
sig
  include BASIC_LIN_ARITH
  val map_data:
    ({add_mono_thms: thm list, mult_mono_thms: thm list, inj_thms: thm list,
      lessD: thm list, neqE: thm list, simpset: Simplifier.simpset} ->
     {add_mono_thms: thm list, mult_mono_thms: thm list, inj_thms: thm list,
      lessD: thm list, neqE: thm list, simpset: Simplifier.simpset}) ->
    Context.generic -> Context.generic
  val warning_count: int ref
  val setup: Context.generic -> Context.generic
end;

structure LinArith: LIN_ARITH =
struct

(* Parameters data for general linear arithmetic functor *)

structure LA_Logic: LIN_ARITH_LOGIC =
struct

val ccontr = ccontr;
val conjI = conjI;
val notI = notI;
val sym = sym;
val not_lessD = @{thm linorder_not_less} RS iffD1;
val not_leD = @{thm linorder_not_le} RS iffD1;
val le0 = thm "le0";

fun mk_Eq thm = (thm RS Eq_FalseI) handle THM _ => (thm RS Eq_TrueI);

val mk_Trueprop = HOLogic.mk_Trueprop;

fun atomize thm = case Thm.prop_of thm of
    Const("Trueprop",_) $ (Const("op &",_) $ _ $ _) =>
    atomize(thm RS conjunct1) @ atomize(thm RS conjunct2)
  | _ => [thm];

fun neg_prop ((TP as Const("Trueprop",_)) $ (Const("Not",_) $ t)) = TP $ t
  | neg_prop ((TP as Const("Trueprop",_)) $ t) = TP $ (HOLogic.Not $t)
  | neg_prop t = raise TERM ("neg_prop", [t]);

fun is_False thm =
  let val _ $ t = Thm.prop_of thm
  in t = Const("False",HOLogic.boolT) end;

fun is_nat(t) = fastype_of1 t = HOLogic.natT;

fun mk_nat_thm sg t =
  let val ct = cterm_of sg t  and cn = cterm_of sg (Var(("n",0),HOLogic.natT))
  in instantiate ([],[(cn,ct)]) le0 end;

end;


(* arith context data *)

datatype arith_tactic =
  ArithTactic of {name: string, tactic: Proof.context -> int -> tactic, id: stamp};

fun mk_arith_tactic name tactic = ArithTactic {name = name, tactic = tactic, id = stamp ()};

fun eq_arith_tactic (ArithTactic {id = id1, ...}, ArithTactic {id = id2, ...}) = (id1 = id2);

structure ArithContextData = GenericDataFun
(
  type T = {splits: thm list,
            inj_consts: (string * typ) list,
            discrete: string list,
            tactics: arith_tactic list};
  val empty = {splits = [], inj_consts = [], discrete = [], tactics = []};
  val extend = I;
  fun merge _
   ({splits= splits1, inj_consts= inj_consts1, discrete= discrete1, tactics= tactics1},
    {splits= splits2, inj_consts= inj_consts2, discrete= discrete2, tactics= tactics2}) : T =
   {splits = Library.merge Thm.eq_thm_prop (splits1, splits2),
    inj_consts = Library.merge (op =) (inj_consts1, inj_consts2),
    discrete = Library.merge (op =) (discrete1, discrete2),
    tactics = Library.merge eq_arith_tactic (tactics1, tactics2)};
);

val get_arith_data = ArithContextData.get o Context.Proof;

val arith_split_add = Thm.declaration_attribute (fn thm =>
  ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
    {splits = update Thm.eq_thm_prop thm splits,
     inj_consts = inj_consts, discrete = discrete, tactics = tactics}));

fun arith_discrete d = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
  {splits = splits, inj_consts = inj_consts,
   discrete = update (op =) d discrete, tactics = tactics});

fun arith_inj_const c = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
  {splits = splits, inj_consts = update (op =) c inj_consts,
   discrete = discrete, tactics= tactics});

fun arith_tactic_add tac = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
  {splits = splits, inj_consts = inj_consts, discrete = discrete,
   tactics = update eq_arith_tactic tac tactics});


val (fast_arith_split_limit, setup1) = Attrib.config_int "fast_arith_split_limit" 9;
val (fast_arith_neq_limit, setup2) = Attrib.config_int "fast_arith_neq_limit" 9;
val setup_options = setup1 #> setup2;


structure LA_Data_Ref =
struct

val fast_arith_neq_limit = fast_arith_neq_limit;


(* Decomposition of terms *)

(*internal representation of linear (in-)equations*)
type decomp =
  ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat * bool);

fun nT (Type ("fun", [N, _])) = (N = HOLogic.natT)
  | nT _                      = false;

fun add_atom (t : term) (m : Rat.rat) (p : (term * Rat.rat) list, i : Rat.rat) :
             (term * Rat.rat) list * Rat.rat =
  case AList.lookup Pattern.aeconv p t of
      NONE   => ((t, m) :: p, i)
    | SOME n => (AList.update Pattern.aeconv (t, Rat.add n m) p, i);

(* decompose nested multiplications, bracketing them to the right and combining
   all their coefficients

   inj_consts: list of constants to be ignored when encountered
               (e.g. arithmetic type conversions that preserve value)

   m: multiplicity associated with the entire product

   returns either (SOME term, associated multiplicity) or (NONE, constant)
*)
fun demult (inj_consts : (string * typ) list) : term * Rat.rat -> term option * Rat.rat =
let
  fun demult ((mC as Const (@{const_name HOL.times}, _)) $ s $ t, m) =
      (case s of Const (@{const_name HOL.times}, _) $ s1 $ s2 =>
        (* bracketing to the right: '(s1 * s2) * t' becomes 's1 * (s2 * t)' *)
        demult (mC $ s1 $ (mC $ s2 $ t), m)
      | _ =>
        (* product 's * t', where either factor can be 'NONE' *)
        (case demult (s, m) of
          (SOME s', m') =>
            (case demult (t, m') of
              (SOME t', m'') => (SOME (mC $ s' $ t'), m'')
            | (NONE,    m'') => (SOME s', m''))
        | (NONE,    m') => demult (t, m')))
    | demult ((mC as Const (@{const_name HOL.divide}, _)) $ s $ t, m) =
      (* FIXME: Shouldn't we simplify nested quotients, e.g. '(s/t)/u' could
         become 's/(t*u)', and '(s*t)/u' could become 's*(t/u)' ?   Note that
         if we choose to do so here, the simpset used by arith must be able to
         perform the same simplifications. *)
      (* FIXME: Currently we treat the numerator as atomic unless the
         denominator can be reduced to a numeric constant.  It might be better
         to demult the numerator in any case, and invent a new term of the form
         '1 / t' if the numerator can be reduced, but the denominator cannot. *)
      (* FIXME: Currently we even treat the whole fraction as atomic unless the
         denominator can be reduced to a numeric constant.  It might be better
         to use the partially reduced denominator (i.e. 's / (2*t)' could be
         demult'ed to 's / t' with multiplicity .5).   This would require a
         very simple change only below, but it breaks existing proofs. *)
      (* quotient 's / t', where the denominator t can be NONE *)
      (* Note: will raise Rat.DIVZERO iff m' is Rat.zero *)
      (case demult (t, Rat.one) of
        (SOME _, _) => (SOME (mC $ s $ t), m)
      | (NONE,  m') => apsnd (Rat.mult (Rat.inv m')) (demult (s, m)))
    (* terms that evaluate to numeric constants *)
    | demult (Const (@{const_name HOL.uminus}, _) $ t, m) = demult (t, Rat.neg m)
    | demult (Const (@{const_name HOL.zero}, _), m) = (NONE, Rat.zero)
    | demult (Const (@{const_name HOL.one}, _), m) = (NONE, m)
    (*Warning: in rare cases number_of encloses a non-numeral,
      in which case dest_numeral raises TERM; hence all the handles below.
      Same for Suc-terms that turn out not to be numerals -
      although the simplifier should eliminate those anyway ...*)
    | demult (t as Const ("Int.number_class.number_of", _) $ n, m) =
      ((NONE, Rat.mult m (Rat.rat_of_int (HOLogic.dest_numeral n)))
        handle TERM _ => (SOME t, m))
    | demult (t as Const (@{const_name Suc}, _) $ _, m) =
      ((NONE, Rat.mult m (Rat.rat_of_int (HOLogic.dest_nat t)))
        handle TERM _ => (SOME t, m))
    (* injection constants are ignored *)
    | demult (t as Const f $ x, m) =
      if member (op =) inj_consts f then demult (x, m) else (SOME t, m)
    (* everything else is considered atomic *)
    | demult (atom, m) = (SOME atom, m)
in demult end;

fun decomp0 (inj_consts : (string * typ) list) (rel : string, lhs : term, rhs : term) :
            ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat) option =
let
  (* Turns a term 'all' and associated multiplicity 'm' into a list 'p' of
     summands and associated multiplicities, plus a constant 'i' (with implicit
     multiplicity 1) *)
  fun poly (Const (@{const_name HOL.plus}, _) $ s $ t,
        m : Rat.rat, pi : (term * Rat.rat) list * Rat.rat) = poly (s, m, poly (t, m, pi))
    | poly (all as Const (@{const_name HOL.minus}, T) $ s $ t, m, pi) =
        if nT T then add_atom all m pi else poly (s, m, poly (t, Rat.neg m, pi))
    | poly (all as Const (@{const_name HOL.uminus}, T) $ t, m, pi) =
        if nT T then add_atom all m pi else poly (t, Rat.neg m, pi)
    | poly (Const (@{const_name HOL.zero}, _), _, pi) =
        pi
    | poly (Const (@{const_name HOL.one}, _), m, (p, i)) =
        (p, Rat.add i m)
    | poly (Const (@{const_name Suc}, _) $ t, m, (p, i)) =
        poly (t, m, (p, Rat.add i m))
    | poly (all as Const (@{const_name HOL.times}, _) $ _ $ _, m, pi as (p, i)) =
        (case demult inj_consts (all, m) of
           (NONE,   m') => (p, Rat.add i m')
         | (SOME u, m') => add_atom u m' pi)
    | poly (all as Const (@{const_name HOL.divide}, _) $ _ $ _, m, pi as (p, i)) =
        (case demult inj_consts (all, m) of
           (NONE,   m') => (p, Rat.add i m')
         | (SOME u, m') => add_atom u m' pi)
    | poly (all as Const ("Int.number_class.number_of", Type(_,[_,T])) $ t, m, pi as (p, i)) =
        (let val k = HOLogic.dest_numeral t
            val k2 = if k < 0 andalso T = HOLogic.natT then 0 else k
        in (p, Rat.add i (Rat.mult m (Rat.rat_of_int k2))) end
        handle TERM _ => add_atom all m pi)
    | poly (all as Const f $ x, m, pi) =
        if f mem inj_consts then poly (x, m, pi) else add_atom all m pi
    | poly (all, m, pi) =
        add_atom all m pi
  val (p, i) = poly (lhs, Rat.one, ([], Rat.zero))
  val (q, j) = poly (rhs, Rat.one, ([], Rat.zero))
in
  case rel of
    @{const_name HOL.less}    => SOME (p, i, "<", q, j)
  | @{const_name HOL.less_eq} => SOME (p, i, "<=", q, j)
  | "op ="              => SOME (p, i, "=", q, j)
  | _                   => NONE
end handle Rat.DIVZERO => NONE;

fun of_lin_arith_sort thy U =
  Sign.of_sort thy (U, ["Ring_and_Field.ordered_idom"]);

fun allows_lin_arith sg (discrete : string list) (U as Type (D, [])) : bool * bool =
  if of_lin_arith_sort sg U then
    (true, D mem discrete)
  else (* special cases *)
    if D mem discrete then  (true, true)  else  (false, false)
  | allows_lin_arith sg discrete U =
  (of_lin_arith_sort sg U, false);

fun decomp_typecheck (thy, discrete, inj_consts) (T : typ, xxx) : decomp option =
  case T of
    Type ("fun", [U, _]) =>
      (case allows_lin_arith thy discrete U of
        (true, d) =>
          (case decomp0 inj_consts xxx of
            NONE                   => NONE
          | SOME (p, i, rel, q, j) => SOME (p, i, rel, q, j, d))
      | (false, _) =>
          NONE)
  | _ => NONE;

fun negate (SOME (x, i, rel, y, j, d)) = SOME (x, i, "~" ^ rel, y, j, d)
  | negate NONE                        = NONE;

fun decomp_negation data
  ((Const ("Trueprop", _)) $ (Const (rel, T) $ lhs $ rhs)) : decomp option =
      decomp_typecheck data (T, (rel, lhs, rhs))
  | decomp_negation data ((Const ("Trueprop", _)) $
  (Const ("Not", _) $ (Const (rel, T) $ lhs $ rhs))) =
      negate (decomp_typecheck data (T, (rel, lhs, rhs)))
  | decomp_negation data _ =
      NONE;

fun decomp ctxt : term -> decomp option =
  let
    val thy = ProofContext.theory_of ctxt
    val {discrete, inj_consts, ...} = get_arith_data ctxt
  in decomp_negation (thy, discrete, inj_consts) end;

fun domain_is_nat (_ $ (Const (_, T) $ _ $ _))                      = nT T
  | domain_is_nat (_ $ (Const ("Not", _) $ (Const (_, T) $ _ $ _))) = nT T
  | domain_is_nat _                                                 = false;

fun number_of (n, T) = HOLogic.mk_number T n;

(*---------------------------------------------------------------------------*)
(* the following code performs splitting of certain constants (e.g. min,     *)
(* max) in a linear arithmetic problem; similar to what split_tac later does *)
(* to the proof state                                                        *)
(*---------------------------------------------------------------------------*)

(* checks if splitting with 'thm' is implemented                             *)

fun is_split_thm (thm : thm) : bool =
  case concl_of thm of _ $ (_ $ (_ $ lhs) $ _) => (
    (* Trueprop $ ((op =) $ (?P $ lhs) $ rhs) *)
    case head_of lhs of
      Const (a, _) => member (op =) [@{const_name Orderings.max},
                                    @{const_name Orderings.min},
                                    @{const_name HOL.abs},
                                    @{const_name HOL.minus},
                                    "Int.nat",
                                    "Divides.div_class.mod",
                                    "Divides.div_class.div"] a
    | _            => (warning ("Lin. Arith.: wrong format for split rule " ^
                                 Display.string_of_thm thm);
                       false))
  | _ => (warning ("Lin. Arith.: wrong format for split rule " ^
                   Display.string_of_thm thm);
          false);

(* substitute new for occurrences of old in a term, incrementing bound       *)
(* variables as needed when substituting inside an abstraction               *)

fun subst_term ([] : (term * term) list) (t : term) = t
  | subst_term pairs                     t          =
      (case AList.lookup Pattern.aeconv pairs t of
        SOME new =>
          new
      | NONE     =>
          (case t of Abs (a, T, body) =>
            let val pairs' = map (pairself (incr_boundvars 1)) pairs
            in  Abs (a, T, subst_term pairs' body)  end
          | t1 $ t2                   =>
            subst_term pairs t1 $ subst_term pairs t2
          | _ => t));

(* approximates the effect of one application of split_tac (followed by NNF  *)
(* normalization) on the subgoal represented by '(Ts, terms)'; returns a     *)
(* list of new subgoals (each again represented by a typ list for bound      *)
(* variables and a term list for premises), or NONE if split_tac would fail  *)
(* on the subgoal                                                            *)

(* FIXME: currently only the effect of certain split theorems is reproduced  *)
(*        (which is why we need 'is_split_thm').  A more canonical           *)
(*        implementation should analyze the right-hand side of the split     *)
(*        theorem that can be applied, and modify the subgoal accordingly.   *)
(*        Or even better, the splitter should be extended to provide         *)
(*        splitting on terms as well as splitting on theorems (where the     *)
(*        former can have a faster implementation as it does not need to be  *)
(*        proof-producing).                                                  *)

fun split_once_items ctxt (Ts : typ list, terms : term list) :
                     (typ list * term list) list option =
let
  val thy = ProofContext.theory_of ctxt
  (* takes a list  [t1, ..., tn]  to the term                                *)
  (*   tn' --> ... --> t1' --> False  ,                                      *)
  (* where ti' = HOLogic.dest_Trueprop ti                                    *)
  fun REPEAT_DETERM_etac_rev_mp terms' =
    fold (curry HOLogic.mk_imp) (map HOLogic.dest_Trueprop terms') HOLogic.false_const
  val split_thms = filter is_split_thm (#splits (get_arith_data ctxt))
  val cmap       = Splitter.cmap_of_split_thms split_thms
  val splits     = Splitter.split_posns cmap thy Ts (REPEAT_DETERM_etac_rev_mp terms)
  val split_limit = Config.get ctxt fast_arith_split_limit
in
  if length splits > split_limit then
   (tracing ("fast_arith_split_limit exceeded (current value is " ^
      string_of_int split_limit ^ ")"); NONE)
  else (
  case splits of [] =>
    (* split_tac would fail: no possible split *)
    NONE
  | ((_, _, _, split_type, split_term) :: _) => (
    (* ignore all but the first possible split *)
    case strip_comb split_term of
    (* ?P (max ?i ?j) = ((?i <= ?j --> ?P ?j) & (~ ?i <= ?j --> ?P ?i)) *)
      (Const (@{const_name Orderings.max}, _), [t1, t2]) =>
      let
        val rev_terms     = rev terms
        val terms1        = map (subst_term [(split_term, t1)]) rev_terms
        val terms2        = map (subst_term [(split_term, t2)]) rev_terms
        val t1_leq_t2     = Const (@{const_name HOL.less_eq},
                                    split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
        val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2
        val not_false     = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1      = (HOLogic.mk_Trueprop t1_leq_t2) :: terms2 @ [not_false]
        val subgoal2      = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms1 @ [not_false]
      in
        SOME [(Ts, subgoal1), (Ts, subgoal2)]
      end
    (* ?P (min ?i ?j) = ((?i <= ?j --> ?P ?i) & (~ ?i <= ?j --> ?P ?j)) *)
    | (Const (@{const_name Orderings.min}, _), [t1, t2]) =>
      let
        val rev_terms     = rev terms
        val terms1        = map (subst_term [(split_term, t1)]) rev_terms
        val terms2        = map (subst_term [(split_term, t2)]) rev_terms
        val t1_leq_t2     = Const (@{const_name HOL.less_eq},
                                    split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
        val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2
        val not_false     = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1      = (HOLogic.mk_Trueprop t1_leq_t2) :: terms1 @ [not_false]
        val subgoal2      = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (Ts, subgoal2)]
      end
    (* ?P (abs ?a) = ((0 <= ?a --> ?P ?a) & (?a < 0 --> ?P (- ?a))) *)
    | (Const (@{const_name HOL.abs}, _), [t1]) =>
      let
        val rev_terms   = rev terms
        val terms1      = map (subst_term [(split_term, t1)]) rev_terms
        val terms2      = map (subst_term [(split_term, Const (@{const_name HOL.uminus},
                            split_type --> split_type) $ t1)]) rev_terms
        val zero        = Const (@{const_name HOL.zero}, split_type)
        val zero_leq_t1 = Const (@{const_name HOL.less_eq},
                            split_type --> split_type --> HOLogic.boolT) $ zero $ t1
        val t1_lt_zero  = Const (@{const_name HOL.less},
                            split_type --> split_type --> HOLogic.boolT) $ t1 $ zero
        val not_false   = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1    = (HOLogic.mk_Trueprop zero_leq_t1) :: terms1 @ [not_false]
        val subgoal2    = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (Ts, subgoal2)]
      end
    (* ?P (?a - ?b) = ((?a < ?b --> ?P 0) & (ALL d. ?a = ?b + d --> ?P d)) *)
    | (Const (@{const_name HOL.minus}, _), [t1, t2]) =>
      let
        (* "d" in the above theorem becomes a new bound variable after NNF   *)
        (* transformation, therefore some adjustment of indices is necessary *)
        val rev_terms       = rev terms
        val zero            = Const (@{const_name HOL.zero}, split_type)
        val d               = Bound 0
        val terms1          = map (subst_term [(split_term, zero)]) rev_terms
        val terms2          = map (subst_term [(incr_boundvars 1 split_term, d)])
                                (map (incr_boundvars 1) rev_terms)
        val t1'             = incr_boundvars 1 t1
        val t2'             = incr_boundvars 1 t2
        val t1_lt_t2        = Const (@{const_name HOL.less},
                                split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
        val t1_eq_t2_plus_d = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
                                (Const (@{const_name HOL.plus},
                                  split_type --> split_type --> split_type) $ t2' $ d)
        val not_false       = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1        = (HOLogic.mk_Trueprop t1_lt_t2) :: terms1 @ [not_false]
        val subgoal2        = (HOLogic.mk_Trueprop t1_eq_t2_plus_d) :: terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (split_type :: Ts, subgoal2)]
      end
    (* ?P (nat ?i) = ((ALL n. ?i = int n --> ?P n) & (?i < 0 --> ?P 0)) *)
    | (Const ("Int.nat", _), [t1]) =>
      let
        val rev_terms   = rev terms
        val zero_int    = Const (@{const_name HOL.zero}, HOLogic.intT)
        val zero_nat    = Const (@{const_name HOL.zero}, HOLogic.natT)
        val n           = Bound 0
        val terms1      = map (subst_term [(incr_boundvars 1 split_term, n)])
                            (map (incr_boundvars 1) rev_terms)
        val terms2      = map (subst_term [(split_term, zero_nat)]) rev_terms
        val t1'         = incr_boundvars 1 t1
        val t1_eq_int_n = Const ("op =", HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1' $
                            (Const (@{const_name of_nat}, HOLogic.natT --> HOLogic.intT) $ n)
        val t1_lt_zero  = Const (@{const_name HOL.less},
                            HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1 $ zero_int
        val not_false   = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1    = (HOLogic.mk_Trueprop t1_eq_int_n) :: terms1 @ [not_false]
        val subgoal2    = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false]
      in
        SOME [(HOLogic.natT :: Ts, subgoal1), (Ts, subgoal2)]
      end
    (* "?P ((?n::nat) mod (number_of ?k)) =
         ((number_of ?k = 0 --> ?P ?n) & (~ (number_of ?k = 0) -->
           (ALL i j. j < number_of ?k --> ?n = number_of ?k * i + j --> ?P j))) *)
    | (Const ("Divides.div_class.mod", Type ("fun", [Type ("nat", []), _])), [t1, t2]) =>
      let
        val rev_terms               = rev terms
        val zero                    = Const (@{const_name HOL.zero}, split_type)
        val i                       = Bound 1
        val j                       = Bound 0
        val terms1                  = map (subst_term [(split_term, t1)]) rev_terms
        val terms2                  = map (subst_term [(incr_boundvars 2 split_term, j)])
                                        (map (incr_boundvars 2) rev_terms)
        val t1'                     = incr_boundvars 2 t1
        val t2'                     = incr_boundvars 2 t2
        val t2_eq_zero              = Const ("op =",
                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
        val t2_neq_zero             = HOLogic.mk_not (Const ("op =",
                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero)
        val j_lt_t2                 = Const (@{const_name HOL.less},
                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
                                         (Const (@{const_name HOL.times},
                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
        val subgoal2                = (map HOLogic.mk_Trueprop
                                        [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j])
                                          @ terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)]
      end
    (* "?P ((?n::nat) div (number_of ?k)) =
         ((number_of ?k = 0 --> ?P 0) & (~ (number_of ?k = 0) -->
           (ALL i j. j < number_of ?k --> ?n = number_of ?k * i + j --> ?P i))) *)
    | (Const ("Divides.div_class.div", Type ("fun", [Type ("nat", []), _])), [t1, t2]) =>
      let
        val rev_terms               = rev terms
        val zero                    = Const (@{const_name HOL.zero}, split_type)
        val i                       = Bound 1
        val j                       = Bound 0
        val terms1                  = map (subst_term [(split_term, zero)]) rev_terms
        val terms2                  = map (subst_term [(incr_boundvars 2 split_term, i)])
                                        (map (incr_boundvars 2) rev_terms)
        val t1'                     = incr_boundvars 2 t1
        val t2'                     = incr_boundvars 2 t2
        val t2_eq_zero              = Const ("op =",
                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
        val t2_neq_zero             = HOLogic.mk_not (Const ("op =",
                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero)
        val j_lt_t2                 = Const (@{const_name HOL.less},
                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
                                         (Const (@{const_name HOL.times},
                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
        val subgoal2                = (map HOLogic.mk_Trueprop
                                        [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j])
                                          @ terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)]
      end
    (* "?P ((?n::int) mod (number_of ?k)) =
         ((iszero (number_of ?k) --> ?P ?n) &
          (neg (number_of (uminus ?k)) -->
            (ALL i j. 0 <= j & j < number_of ?k & ?n = number_of ?k * i + j --> ?P j)) &
          (neg (number_of ?k) -->
            (ALL i j. number_of ?k < j & j <= 0 & ?n = number_of ?k * i + j --> ?P j))) *)
    | (Const ("Divides.div_class.mod",
        Type ("fun", [Type ("Int.int", []), _])), [t1, t2 as (number_of $ k)]) =>
      let
        val rev_terms               = rev terms
        val zero                    = Const (@{const_name HOL.zero}, split_type)
        val i                       = Bound 1
        val j                       = Bound 0
        val terms1                  = map (subst_term [(split_term, t1)]) rev_terms
        val terms2_3                = map (subst_term [(incr_boundvars 2 split_term, j)])
                                        (map (incr_boundvars 2) rev_terms)
        val t1'                     = incr_boundvars 2 t1
        val (t2' as (_ $ k'))       = incr_boundvars 2 t2
        val iszero_t2               = Const ("Int.iszero", split_type --> HOLogic.boolT) $ t2
        val neg_minus_k             = Const ("Int.neg", split_type --> HOLogic.boolT) $
                                        (number_of $
                                          (Const (@{const_name HOL.uminus},
                                            HOLogic.intT --> HOLogic.intT) $ k'))
        val zero_leq_j              = Const (@{const_name HOL.less_eq},
                                        split_type --> split_type --> HOLogic.boolT) $ zero $ j
        val j_lt_t2                 = Const (@{const_name HOL.less},
                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
                                         (Const (@{const_name HOL.times},
                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
        val neg_t2                  = Const ("Int.neg", split_type --> HOLogic.boolT) $ t2'
        val t2_lt_j                 = Const (@{const_name HOL.less},
                                        split_type --> split_type--> HOLogic.boolT) $ t2' $ j
        val j_leq_zero              = Const (@{const_name HOL.less_eq},
                                        split_type --> split_type --> HOLogic.boolT) $ j $ zero
        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1                = (HOLogic.mk_Trueprop iszero_t2) :: terms1 @ [not_false]
        val subgoal2                = (map HOLogic.mk_Trueprop [neg_minus_k, zero_leq_j])
                                        @ hd terms2_3
                                        :: (if tl terms2_3 = [] then [not_false] else [])
                                        @ (map HOLogic.mk_Trueprop [j_lt_t2, t1_eq_t2_times_i_plus_j])
                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
        val subgoal3                = (map HOLogic.mk_Trueprop [neg_t2, t2_lt_j])
                                        @ hd terms2_3
                                        :: (if tl terms2_3 = [] then [not_false] else [])
                                        @ (map HOLogic.mk_Trueprop [j_leq_zero, t1_eq_t2_times_i_plus_j])
                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
        val Ts'                     = split_type :: split_type :: Ts
      in
        SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)]
      end
    (* "?P ((?n::int) div (number_of ?k)) =
         ((iszero (number_of ?k) --> ?P 0) &
          (neg (number_of (uminus ?k)) -->
            (ALL i. (EX j. 0 <= j & j < number_of ?k & ?n = number_of ?k * i + j) --> ?P i)) &
          (neg (number_of ?k) -->
            (ALL i. (EX j. number_of ?k < j & j <= 0 & ?n = number_of ?k * i + j) --> ?P i))) *)
    | (Const ("Divides.div_class.div",
        Type ("fun", [Type ("Int.int", []), _])), [t1, t2 as (number_of $ k)]) =>
      let
        val rev_terms               = rev terms
        val zero                    = Const (@{const_name HOL.zero}, split_type)
        val i                       = Bound 1
        val j                       = Bound 0
        val terms1                  = map (subst_term [(split_term, zero)]) rev_terms
        val terms2_3                = map (subst_term [(incr_boundvars 2 split_term, i)])
                                        (map (incr_boundvars 2) rev_terms)
        val t1'                     = incr_boundvars 2 t1
        val (t2' as (_ $ k'))       = incr_boundvars 2 t2
        val iszero_t2               = Const ("Int.iszero", split_type --> HOLogic.boolT) $ t2
        val neg_minus_k             = Const ("Int.neg", split_type --> HOLogic.boolT) $
                                        (number_of $
                                          (Const (@{const_name HOL.uminus},
                                            HOLogic.intT --> HOLogic.intT) $ k'))
        val zero_leq_j              = Const (@{const_name HOL.less_eq},
                                        split_type --> split_type --> HOLogic.boolT) $ zero $ j
        val j_lt_t2                 = Const (@{const_name HOL.less},
                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
        val t1_eq_t2_times_i_plus_j = Const ("op =",
                                        split_type --> split_type --> HOLogic.boolT) $ t1' $
                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
                                         (Const (@{const_name HOL.times},
                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
        val neg_t2                  = Const ("Int.neg", split_type --> HOLogic.boolT) $ t2'
        val t2_lt_j                 = Const (@{const_name HOL.less},
                                        split_type --> split_type--> HOLogic.boolT) $ t2' $ j
        val j_leq_zero              = Const (@{const_name HOL.less_eq},
                                        split_type --> split_type --> HOLogic.boolT) $ j $ zero
        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
        val subgoal1                = (HOLogic.mk_Trueprop iszero_t2) :: terms1 @ [not_false]
        val subgoal2                = (HOLogic.mk_Trueprop neg_minus_k)
                                        :: terms2_3
                                        @ not_false
                                        :: (map HOLogic.mk_Trueprop
                                             [zero_leq_j, j_lt_t2, t1_eq_t2_times_i_plus_j])
        val subgoal3                = (HOLogic.mk_Trueprop neg_t2)
                                        :: terms2_3
                                        @ not_false
                                        :: (map HOLogic.mk_Trueprop
                                             [t2_lt_j, j_leq_zero, t1_eq_t2_times_i_plus_j])
        val Ts'                     = split_type :: split_type :: Ts
      in
        SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)]
      end
    (* this will only happen if a split theorem can be applied for which no  *)
    (* code exists above -- in which case either the split theorem should be *)
    (* implemented above, or 'is_split_thm' should be modified to filter it  *)
    (* out                                                                   *)
    | (t, ts) => (
      warning ("Lin. Arith.: split rule for " ^ Syntax.string_of_term ctxt t ^
               " (with " ^ string_of_int (length ts) ^
               " argument(s)) not implemented; proof reconstruction is likely to fail");
      NONE
    ))
  )
end;

(* remove terms that do not satisfy 'p'; change the order of the remaining   *)
(* terms in the same way as filter_prems_tac does                            *)

fun filter_prems_tac_items (p : term -> bool) (terms : term list) : term list =
let
  fun filter_prems (t, (left, right)) =
    if  p t  then  (left, right @ [t])  else  (left @ right, [])
  val (left, right) = List.foldl filter_prems ([], []) terms
in
  right @ left
end;

(* return true iff TRY (etac notE) THEN eq_assume_tac would succeed on a     *)
(* subgoal that has 'terms' as premises                                      *)

fun negated_term_occurs_positively (terms : term list) : bool =
  List.exists
    (fn (Trueprop $ (Const ("Not", _) $ t)) => member Pattern.aeconv terms (Trueprop $ t)
      | _                                   => false)
    terms;

fun pre_decomp ctxt (Ts : typ list, terms : term list) : (typ list * term list) list =
let
  (* repeatedly split (including newly emerging subgoals) until no further   *)
  (* splitting is possible                                                   *)
  fun split_loop ([] : (typ list * term list) list) = ([] : (typ list * term list) list)
    | split_loop (subgoal::subgoals)                = (
        case split_once_items ctxt subgoal of
          SOME new_subgoals => split_loop (new_subgoals @ subgoals)
        | NONE              => subgoal :: split_loop subgoals
      )
  fun is_relevant t  = isSome (decomp ctxt t)
  (* filter_prems_tac is_relevant: *)
  val relevant_terms = filter_prems_tac_items is_relevant terms
  (* split_tac, NNF normalization: *)
  val split_goals    = split_loop [(Ts, relevant_terms)]
  (* necessary because split_once_tac may normalize terms: *)
  val beta_eta_norm  = map (apsnd (map (Envir.eta_contract o Envir.beta_norm))) split_goals
  (* TRY (etac notE) THEN eq_assume_tac: *)
  val result         = List.filter (not o negated_term_occurs_positively o snd) beta_eta_norm
in
  result
end;

(* takes the i-th subgoal  [| A1; ...; An |] ==> B  to                       *)
(* An --> ... --> A1 --> B,  performs splitting with the given 'split_thms'  *)
(* (resulting in a different subgoal P), takes  P  to  ~P ==> False,         *)
(* performs NNF-normalization of ~P, and eliminates conjunctions,            *)
(* disjunctions and existential quantifiers from the premises, possibly (in  *)
(* the case of disjunctions) resulting in several new subgoals, each of the  *)
(* general form  [| Q1; ...; Qm |] ==> False.  Fails if more than            *)
(* !fast_arith_split_limit splits are possible.                              *)

local
  val nnf_simpset =
    empty_ss setmkeqTrue mk_eq_True
    setmksimps (mksimps mksimps_pairs)
    addsimps [imp_conv_disj, iff_conv_conj_imp, de_Morgan_disj, de_Morgan_conj,
      not_all, not_ex, not_not]
  fun prem_nnf_tac i st =
    full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st
in

fun split_once_tac ctxt split_thms =
  let
    val thy = ProofContext.theory_of ctxt
    val cond_split_tac = SUBGOAL (fn (subgoal, i) =>
      let
        val Ts = rev (map snd (Logic.strip_params subgoal))
        val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl subgoal)
        val cmap = Splitter.cmap_of_split_thms split_thms
        val splits = Splitter.split_posns cmap thy Ts concl
        val split_limit = Config.get ctxt fast_arith_split_limit
      in
        if length splits > split_limit then no_tac
        else split_tac split_thms i
      end)
  in
    EVERY' [
      REPEAT_DETERM o etac rev_mp,
      cond_split_tac,
      rtac ccontr,
      prem_nnf_tac,
      TRY o REPEAT_ALL_NEW (DETERM o (eresolve_tac [conjE, exE] ORELSE' etac disjE))
    ]
  end;

end;  (* local *)

(* remove irrelevant premises, then split the i-th subgoal (and all new      *)
(* subgoals) by using 'split_once_tac' repeatedly.  Beta-eta-normalize new   *)
(* subgoals and finally attempt to solve them by finding an immediate        *)
(* contradiction (i.e. a term and its negation) in their premises.           *)

fun pre_tac ctxt i =
let
  val split_thms = filter is_split_thm (#splits (get_arith_data ctxt))
  fun is_relevant t = isSome (decomp ctxt t)
in
  DETERM (
    TRY (filter_prems_tac is_relevant i)
      THEN (
        (TRY o REPEAT_ALL_NEW (split_once_tac ctxt split_thms))
          THEN_ALL_NEW
            (CONVERSION Drule.beta_eta_conversion
              THEN'
            (TRY o (etac notE THEN' eq_assume_tac)))
      ) i
  )
end;

end;  (* LA_Data_Ref *)


val lin_arith_pre_tac = LA_Data_Ref.pre_tac;

structure Fast_Arith = Fast_Lin_Arith(structure LA_Logic = LA_Logic and LA_Data = LA_Data_Ref);

val map_data = Fast_Arith.map_data;

fun fast_arith_tac ctxt = Fast_Arith.lin_arith_tac ctxt false;
val fast_ex_arith_tac = Fast_Arith.lin_arith_tac;
val trace_arith = Fast_Arith.trace;
val warning_count = Fast_Arith.warning_count;

(* reduce contradictory <= to False.
   Most of the work is done by the cancel tactics. *)

val init_arith_data =
 Fast_Arith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, ...} =>
   {add_mono_thms = add_mono_thms @
    @{thms add_mono_thms_ordered_semiring} @ @{thms add_mono_thms_ordered_field},
    mult_mono_thms = mult_mono_thms,
    inj_thms = inj_thms,
    lessD = lessD @ [thm "Suc_leI"],
    neqE = [@{thm linorder_neqE_nat}, @{thm linorder_neqE_ordered_idom}],
    simpset = HOL_basic_ss
      addsimps
       [@{thm "monoid_add_class.add_0_left"},
        @{thm "monoid_add_class.add_0_right"},
        @{thm "Zero_not_Suc"}, @{thm "Suc_not_Zero"}, @{thm "le_0_eq"}, @{thm "One_nat_def"},
        @{thm "order_less_irrefl"}, @{thm "zero_neq_one"}, @{thm "zero_less_one"},
        @{thm "zero_le_one"}, @{thm "zero_neq_one"} RS not_sym, @{thm "not_one_le_zero"},
        @{thm "not_one_less_zero"}]
      addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]
       (*abel_cancel helps it work in abstract algebraic domains*)
      addsimprocs Nat_Arith.nat_cancel_sums_add}) #>
  arith_discrete "nat";

fun add_arith_facts ss =
  add_prems (ArithFacts.get (MetaSimplifier.the_context ss)) ss;

val lin_arith_simproc = add_arith_facts #> Fast_Arith.lin_arith_simproc;

val fast_nat_arith_simproc =
  Simplifier.simproc (the_context ()) "fast_nat_arith"
    ["(m::nat) < n","(m::nat) <= n", "(m::nat) = n"] (K lin_arith_simproc);

(* Because of fast_nat_arith_simproc, the arithmetic solver is really only
useful to detect inconsistencies among the premises for subgoals which are
*not* themselves (in)equalities, because the latter activate
fast_nat_arith_simproc anyway. However, it seems cheaper to activate the
solver all the time rather than add the additional check. *)


(* generic refutation procedure *)

(* parameters:

   test: term -> bool
   tests if a term is at all relevant to the refutation proof;
   if not, then it can be discarded. Can improve performance,
   esp. if disjunctions can be discarded (no case distinction needed!).

   prep_tac: int -> tactic
   A preparation tactic to be applied to the goal once all relevant premises
   have been moved to the conclusion.

   ref_tac: int -> tactic
   the actual refutation tactic. Should be able to deal with goals
   [| A1; ...; An |] ==> False
   where the Ai are atomic, i.e. no top-level &, | or EX
*)

local
  val nnf_simpset =
    empty_ss setmkeqTrue mk_eq_True
    setmksimps (mksimps mksimps_pairs)
    addsimps [@{thm imp_conv_disj}, @{thm iff_conv_conj_imp}, @{thm de_Morgan_disj},
      @{thm de_Morgan_conj}, @{thm not_all}, @{thm not_ex}, @{thm not_not}];
  fun prem_nnf_tac i st =
    full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st;
in
fun refute_tac test prep_tac ref_tac =
  let val refute_prems_tac =
        REPEAT_DETERM
              (eresolve_tac [@{thm conjE}, @{thm exE}] 1 ORELSE
               filter_prems_tac test 1 ORELSE
               etac @{thm disjE} 1) THEN
        (DETERM (etac @{thm notE} 1 THEN eq_assume_tac 1) ORELSE
         ref_tac 1);
  in EVERY'[TRY o filter_prems_tac test,
            REPEAT_DETERM o etac @{thm rev_mp}, prep_tac, rtac @{thm ccontr}, prem_nnf_tac,
            SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
  end;
end;


(* arith proof method *)

local

fun raw_arith_tac ctxt ex =
  (* FIXME: K true should be replaced by a sensible test (perhaps "isSome o
     decomp sg"? -- but note that the test is applied to terms already before
     they are split/normalized) to speed things up in case there are lots of
     irrelevant terms involved; elimination of min/max can be optimized:
     (max m n + k <= r) = (m+k <= r & n+k <= r)
     (l <= min m n + k) = (l <= m+k & l <= n+k)
  *)
  refute_tac (K true)
    (* Splitting is also done inside fast_arith_tac, but not completely --   *)
    (* split_tac may use split theorems that have not been implemented in    *)
    (* fast_arith_tac (cf. pre_decomp and split_once_items above), and       *)
    (* fast_arith_split_limit may trigger.                                   *)
    (* Therefore splitting outside of fast_arith_tac may allow us to prove   *)
    (* some goals that fast_arith_tac alone would fail on.                   *)
    (REPEAT_DETERM o split_tac (#splits (get_arith_data ctxt)))
    (fast_ex_arith_tac ctxt ex);

fun more_arith_tacs ctxt =
  let val tactics = #tactics (get_arith_data ctxt)
  in FIRST' (map (fn ArithTactic {tactic, ...} => tactic ctxt) tactics) end;

in

fun simple_arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt true];

fun arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt true,
  more_arith_tacs ctxt];

fun silent_arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt false,
  more_arith_tacs ctxt];

val arith_method = Args.bang_facts >>
  (fn prems => fn ctxt => METHOD (fn facts =>
      HEADGOAL (Method.insert_tac (prems @ ArithFacts.get ctxt @ facts)
      THEN' arith_tac ctxt)));

end;


(* context setup *)

val setup =
  init_arith_data #>
  Simplifier.map_ss (fn ss => ss addsimprocs [fast_nat_arith_simproc]
    addSolver (mk_solver' "lin_arith"
      (add_arith_facts #> Fast_Arith.cut_lin_arith_tac))) #>
  Context.mapping
   (setup_options #>
    Method.setup @{binding arith} arith_method "decide linear arithmetic" #>
    Attrib.setup @{binding arith_split} (Scan.succeed arith_split_add)
      "declaration of split rules for arithmetic procedure") I;

end;

structure BasicLinArith: BASIC_LIN_ARITH = LinArith;
open BasicLinArith;