src/ZF/ex/Comb.thy
author paulson
Tue, 05 Sep 2000 13:12:00 +0200
changeset 9843 cc8aa63bdad6
parent 1702 4aa538e82f76
child 11316 b4e71bd751e4
permissions -rw-r--r--
tidied, proving gcd_greatest_iff and using induct_tac

(*  Title:      ZF/ex/Comb.thy
    ID:         $Id$
    Author:     Lawrence C Paulson
    Copyright   1994  University of Cambridge

Combinatory Logic example: the Church-Rosser Theorem
Curiously, combinators do not include free variables.

Example taken from
    J. Camilleri and T. F. Melham.
    Reasoning with Inductively Defined Relations in the HOL Theorem Prover.
    Report 265, University of Cambridge Computer Laboratory, 1992.
*)


Comb = Datatype +

(** Datatype definition of combinators S and K, with infixed application **)
consts comb :: i
datatype
  "comb" = K
         | S
         | "#" ("p: comb", "q: comb")   (infixl 90)

(** Inductive definition of contractions, -1->
             and (multi-step) reductions, --->
**)
consts
  contract  :: i
  "-1->"    :: [i,i] => o                       (infixl 50)
  "--->"    :: [i,i] => o                       (infixl 50)

translations
  "p -1-> q" == "<p,q> : contract"
  "p ---> q" == "<p,q> : contract^*"

inductive
  domains   "contract" <= "comb*comb"
  intrs
    K     "[| p:comb;  q:comb |] ==> K#p#q -1-> p"
    S     "[| p:comb;  q:comb;  r:comb |] ==> S#p#q#r -1-> (p#r)#(q#r)"
    Ap1   "[| p-1->q;  r:comb |] ==> p#r -1-> q#r"
    Ap2   "[| p-1->q;  r:comb |] ==> r#p -1-> r#q"
  type_intrs "comb.intrs"


(** Inductive definition of parallel contractions, =1=>
             and (multi-step) parallel reductions, ===>
**)
consts
  parcontract :: i
  "=1=>"    :: [i,i] => o                       (infixl 50)
  "===>"    :: [i,i] => o                       (infixl 50)

translations
  "p =1=> q" == "<p,q> : parcontract"
  "p ===> q" == "<p,q> : parcontract^+"

inductive
  domains   "parcontract" <= "comb*comb"
  intrs
    refl  "[| p:comb |] ==> p =1=> p"
    K     "[| p:comb;  q:comb |] ==> K#p#q =1=> p"
    S     "[| p:comb;  q:comb;  r:comb |] ==> S#p#q#r =1=> (p#r)#(q#r)"
    Ap    "[| p=1=>q;  r=1=>s |] ==> p#r =1=> q#s"
  type_intrs "comb.intrs"


(*Misc definitions*)
constdefs
  I :: i
  "I == S#K#K"

  diamond :: i => o
  "diamond(r) == ALL x y. <x,y>:r --> 
                          (ALL y'. <x,y'>:r --> 
                                   (EX z. <y,z>:r & <y',z> : r))"

end