(*
Factorisation within a factorial domain
$Id$
Author: Clemens Ballarin, started 25 November 1997
*)
theory Factor imports Ring2 begin
definition
Factorisation :: "['a::ring, 'a list, 'a] => bool" where
(* factorisation of x into a list of irred factors and a unit u *)
"Factorisation x factors u \<longleftrightarrow>
x = foldr op* factors u &
(ALL a : set factors. irred a) & u dvd 1"
lemma irred_dvd_lemma: "!! c::'a::factorial.
[| irred c; irred a; irred b; c dvd a*b |] ==> c assoc a | c assoc b"
apply (unfold assoc_def)
apply (frule factorial_prime)
apply (unfold irred_def prime_def)
apply blast
done
lemma irred_dvd_list_lemma: "!! c::'a::factorial.
[| irred c; a dvd 1 |] ==>
(ALL b : set factors. irred b) & c dvd foldr op* factors a -->
(EX d. c assoc d & d : set factors)"
apply (unfold assoc_def)
apply (induct_tac factors)
(* Base case: c dvd a contradicts irred c *)
apply (simp add: irred_def)
apply (blast intro: dvd_trans_ring)
(* Induction step *)
apply (frule factorial_prime)
apply (simp add: irred_def prime_def)
apply blast
done
lemma irred_dvd_list: "!! c::'a::factorial.
[| irred c; ALL b : set factors. irred b; a dvd 1;
c dvd foldr op* factors a |] ==>
EX d. c assoc d & d : set factors"
apply (rule irred_dvd_list_lemma [THEN mp])
apply auto
done
lemma Factorisation_dvd: "!! c::'a::factorial.
[| irred c; Factorisation x factors u; c dvd x |] ==>
EX d. c assoc d & d : set factors"
apply (unfold Factorisation_def)
apply (rule irred_dvd_list_lemma [THEN mp])
apply auto
done
lemma Factorisation_irred: "!! c::'a::factorial.
[| Factorisation x factors u; a : set factors |] ==> irred a"
unfolding Factorisation_def by blast
end