(* $Id$ *)
theory Weakening
imports "../Nominal"
begin
section {* Weakening Example for the Simply-Typed Lambda-Calculus *}
(*================================================================*)
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam "\<guillemotleft>name\<guillemotright>lam" ("Lam [_]._" [100,100] 100)
nominal_datatype ty =
TVar "nat"
| TArr "ty" "ty" (infix "\<rightarrow>" 200)
lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x\<sharp>T"
by (nominal_induct T rule: ty.induct)
(auto simp add: fresh_nat)
text {* valid contexts *}
inductive2
valid :: "(name\<times>ty) list \<Rightarrow> bool"
where
v1[intro]: "valid []"
| v2[intro]: "\<lbrakk>valid \<Gamma>;a\<sharp>\<Gamma>\<rbrakk>\<Longrightarrow> valid ((a,\<sigma>)#\<Gamma>)"
equivariance valid
text{* typing judgements *}
inductive2
typing :: "(name\<times>ty) list\<Rightarrow>lam\<Rightarrow>ty\<Rightarrow>bool" ("_ \<turnstile> _ : _" [60,60,60] 60)
where
t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x,T)\<in>set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
| t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1\<rightarrow>T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
| t_Lam[intro]: "\<lbrakk>x\<sharp>\<Gamma>;((x,T1)#\<Gamma>) \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x].t : T1\<rightarrow>T2"
equivariance typing
(* automatically deriving the strong induction principle *)
nominal_inductive typing
by (simp_all add: abs_fresh ty_fresh)
text {* definition of a subcontext *}
abbreviation
"sub_context" :: "(name\<times>ty) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" ("_ \<subseteq> _" [60,60] 60)
where
"\<Gamma>1 \<subseteq> \<Gamma>2 \<equiv> \<forall>x T. (x,T)\<in>set \<Gamma>1 \<longrightarrow> (x,T)\<in>set \<Gamma>2"
text {* Now it comes: The Weakening Lemma *}
lemma weakening_version1:
assumes a: "\<Gamma>1 \<turnstile> t : T"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<subseteq> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t : T"
using a b c
by (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
(auto | atomize)+
lemma weakening_version2:
fixes \<Gamma>1::"(name\<times>ty) list"
and t ::"lam"
and \<tau> ::"ty"
assumes a: "\<Gamma>1 \<turnstile> t : T"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<subseteq> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t : T"
using a b c
proof (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
case (t_Var \<Gamma>1 x T) (* variable case *)
have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
moreover
have "valid \<Gamma>2" by fact
moreover
have "(x,T)\<in> set \<Gamma>1" by fact
ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto
next
case (t_Lam x \<Gamma>1 T1 t T2) (* lambda case *)
have vc: "x\<sharp>\<Gamma>2" by fact (* variable convention *)
have ih: "\<lbrakk>valid ((x,T1)#\<Gamma>2); (x,T1)#\<Gamma>1 \<subseteq> (x,T1)#\<Gamma>2\<rbrakk> \<Longrightarrow> (x,T1)#\<Gamma>2 \<turnstile> t:T2" by fact
have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
then have "(x,T1)#\<Gamma>1 \<subseteq> (x,T1)#\<Gamma>2" by simp
moreover
have "valid \<Gamma>2" by fact
then have "valid ((x,T1)#\<Gamma>2)" using vc by (simp add: v2)
ultimately have "(x,T1)#\<Gamma>2 \<turnstile> t : T2" using ih by simp
with vc show "\<Gamma>2 \<turnstile> Lam [x].t : T1\<rightarrow>T2" by auto
qed (auto) (* app case *)
lemma weakening_version3:
assumes a: "\<Gamma>1 \<turnstile> t : T"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<subseteq> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t : T"
using a b c
proof (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
case (t_Lam x \<Gamma>1 T1 t T2) (* lambda case *)
have vc: "x\<sharp>\<Gamma>2" by fact (* variable convention *)
have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x,T1)#\<Gamma>1 \<subseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact
have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
then have "(x,T1)#\<Gamma>1 \<subseteq> (x,T1)#\<Gamma>2" by simp
moreover
have "valid \<Gamma>2" by fact
then have "valid ((x,T1)#\<Gamma>2)" using vc by (simp add: v2)
ultimately have "(x,T1)#\<Gamma>2 \<turnstile> t : T2" using ih by simp
with vc show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" by auto
qed (auto) (* app and var case *)
text{* The original induction principle for the typing relation
is not strong enough - even this simple lemma fails to be simple ;o) *}
lemma weakening_too_weak:
assumes a: "\<Gamma>1 \<turnstile> t : T"
and b: "valid \<Gamma>2"
and c: "\<Gamma>1 \<subseteq> \<Gamma>2"
shows "\<Gamma>2 \<turnstile> t : T"
using a b c
proof (induct arbitrary: \<Gamma>2)
case (t_Var \<Gamma>1 x T) (* variable case works *)
have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
moreover
have "valid \<Gamma>2" by fact
moreover
have "(x,T) \<in> (set \<Gamma>1)" by fact
ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto
next
case (t_Lam x \<Gamma>1 T1 t T2) (* lambda case *)
(* all assumptions available in this case*)
have a0: "x\<sharp>\<Gamma>1" by fact
have a1: "(x,T1)#\<Gamma>1 \<turnstile> t : T2" by fact
have a2: "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
have a3: "valid \<Gamma>2" by fact
have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x,T1)#\<Gamma>1 \<subseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact
have "(x,T1)#\<Gamma>1 \<subseteq> (x,T1)#\<Gamma>2" using a2 by simp
moreover
have "valid ((x,T1)#\<Gamma>2)" using v2 (* fails *)
oops
end