src/HOL/ex/Lagrange.thy
author wenzelm
Tue, 10 Jul 2007 23:29:43 +0200
changeset 23719 ccd9cb15c062
parent 23477 f4b83f03cac9
child 25475 d5a382ccb5cc
permissions -rw-r--r--
more markup for inner and outer syntax; added enclose;

(*  Title:      HOL/ex/Lagrange.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1996 TU Muenchen
*)

header {* A lemma for Lagrange's theorem *}

theory Lagrange imports Main begin

text {* This theory only contains a single theorem, which is a lemma
in Lagrange's proof that every natural number is the sum of 4 squares.
Its sole purpose is to demonstrate ordered rewriting for commutative
rings.

The enterprising reader might consider proving all of Lagrange's
theorem.  *}

definition sq :: "'a::times => 'a" where "sq x == x*x"

text {* The following lemma essentially shows that every natural
number is the sum of four squares, provided all prime numbers are.
However, this is an abstract theorem about commutative rings.  It has,
a priori, nothing to do with nat. *}

(* These two simprocs are even less efficient than ordered rewriting
   and kill the second example: *)
ML_setup {*
  Delsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]
*}

lemma Lagrange_lemma: fixes x1 :: "'a::comm_ring" shows
  "(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
   sq (x1*y1 - x2*y2 - x3*y3 - x4*y4)  +
   sq (x1*y2 + x2*y1 + x3*y4 - x4*y3)  +
   sq (x1*y3 - x2*y4 + x3*y1 + x4*y2)  +
   sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)"
by (simp add: sq_def ring_simps)


text {* A challenge by John Harrison. Takes about 17s on a 1.6GHz machine. *}

lemma fixes p1 :: "'a::comm_ring" shows
  "(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * 
   (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) 
    = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + 
      sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
      sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
      sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
      sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
      sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
      sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
      sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
by (simp add: sq_def ring_simps)

end