(* Title: HOLCF/IOA/ABP/Abschannel.thy
ID: $Id$
Author: Olaf Müller
*)
header {* The transmission channel *}
theory Abschannel
imports IOA Action Lemmas
begin
datatype 'a abs_action = S 'a | R 'a
consts
ch_asig :: "'a abs_action signature"
ch_trans :: "('a abs_action, 'a list)transition set"
ch_ioa :: "('a abs_action, 'a list)ioa"
rsch_actions :: "'m action => bool abs_action option"
srch_actions :: "'m action =>(bool * 'm) abs_action option"
srch_asig :: "'m action signature"
rsch_asig :: "'m action signature"
srch_trans :: "('m action, 'm packet list)transition set"
rsch_trans :: "('m action, bool list)transition set"
srch_ioa :: "('m action, 'm packet list)ioa"
rsch_ioa :: "('m action, bool list)ioa"
defs
srch_asig_def: "srch_asig == asig_of(srch_ioa)"
rsch_asig_def: "rsch_asig == asig_of(rsch_ioa)"
srch_trans_def: "srch_trans == trans_of(srch_ioa)"
rsch_trans_def: "rsch_trans == trans_of(rsch_ioa)"
srch_ioa_def: "srch_ioa == rename ch_ioa srch_actions"
rsch_ioa_def: "rsch_ioa == rename ch_ioa rsch_actions"
(**********************************************************
G e n e r i c C h a n n e l
*********************************************************)
ch_asig_def: "ch_asig == (UN b. {S(b)}, UN b. {R(b)}, {})"
ch_trans_def: "ch_trans ==
{tr. let s = fst(tr);
t = snd(snd(tr))
in
case fst(snd(tr))
of S(b) => ((t = s) | (t = s @ [b])) |
R(b) => s ~= [] &
b = hd(s) &
((t = s) | (t = tl(s))) }"
ch_ioa_def: "ch_ioa == (ch_asig, {[]}, ch_trans,{},{})"
(**********************************************************
C o n c r e t e C h a n n e l s b y R e n a m i n g
*********************************************************)
rsch_actions_def: "rsch_actions (akt) ==
case akt of
Next => None |
S_msg(m) => None |
R_msg(m) => None |
S_pkt(packet) => None |
R_pkt(packet) => None |
S_ack(b) => Some(S(b)) |
R_ack(b) => Some(R(b))"
srch_actions_def: "srch_actions (akt) ==
case akt of
Next => None |
S_msg(m) => None |
R_msg(m) => None |
S_pkt(p) => Some(S(p)) |
R_pkt(p) => Some(R(p)) |
S_ack(b) => None |
R_ack(b) => None"
end