(* Title: ZF/WF.thy
Author: Tobias Nipkow and Lawrence C Paulson
Copyright 1994 University of Cambridge
Derived first for transitive relations, and finally for arbitrary WF relations
via wf_trancl and trans_trancl.
It is difficult to derive this general case directly, using r^+ instead of
r. In is_recfun, the two occurrences of the relation must have the same
form. Inserting r^+ in the_recfun or wftrec yields a recursion rule with
r^+ -`` {a} instead of r-``{a}. This recursion rule is stronger in
principle, but harder to use, especially to prove wfrec_eclose_eq in
epsilon.ML. Expanding out the definition of wftrec in wfrec would yield
a mess.
*)
section\<open>Well-Founded Recursion\<close>
theory WF imports Trancl begin
definition
wf :: "i=>o" where
(*r is a well-founded relation*)
"wf(r) == \<forall>Z. Z=0 | (\<exists>x\<in>Z. \<forall>y. <y,x>:r \<longrightarrow> ~ y \<in> Z)"
definition
wf_on :: "[i,i]=>o" ("wf[_]'(_')") where
(*r is well-founded on A*)
"wf_on(A,r) == wf(r \<inter> A*A)"
definition
is_recfun :: "[i, i, [i,i]=>i, i] =>o" where
"is_recfun(r,a,H,f) == (f = (\<lambda>x\<in>r-``{a}. H(x, restrict(f, r-``{x}))))"
definition
the_recfun :: "[i, i, [i,i]=>i] =>i" where
"the_recfun(r,a,H) == (THE f. is_recfun(r,a,H,f))"
definition
wftrec :: "[i, i, [i,i]=>i] =>i" where
"wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
definition
wfrec :: "[i, i, [i,i]=>i] =>i" where
(*public version. Does not require r to be transitive*)
"wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
definition
wfrec_on :: "[i, i, i, [i,i]=>i] =>i" ("wfrec[_]'(_,_,_')") where
"wfrec[A](r,a,H) == wfrec(r \<inter> A*A, a, H)"
subsection\<open>Well-Founded Relations\<close>
subsubsection\<open>Equivalences between @{term wf} and @{term wf_on}\<close>
lemma wf_imp_wf_on: "wf(r) ==> wf[A](r)"
by (unfold wf_def wf_on_def, force)
lemma wf_on_imp_wf: "[|wf[A](r); r \<subseteq> A*A|] ==> wf(r)"
by (simp add: wf_on_def subset_Int_iff)
lemma wf_on_field_imp_wf: "wf[field(r)](r) ==> wf(r)"
by (unfold wf_def wf_on_def, fast)
lemma wf_iff_wf_on_field: "wf(r) \<longleftrightarrow> wf[field(r)](r)"
by (blast intro: wf_imp_wf_on wf_on_field_imp_wf)
lemma wf_on_subset_A: "[| wf[A](r); B<=A |] ==> wf[B](r)"
by (unfold wf_on_def wf_def, fast)
lemma wf_on_subset_r: "[| wf[A](r); s<=r |] ==> wf[A](s)"
by (unfold wf_on_def wf_def, fast)
lemma wf_subset: "[|wf(s); r<=s|] ==> wf(r)"
by (simp add: wf_def, fast)
subsubsection\<open>Introduction Rules for @{term wf_on}\<close>
text\<open>If every non-empty subset of @{term A} has an @{term r}-minimal element
then we have @{term "wf[A](r)"}.\<close>
lemma wf_onI:
assumes prem: "!!Z u. [| Z<=A; u \<in> Z; \<forall>x\<in>Z. \<exists>y\<in>Z. <y,x>:r |] ==> False"
shows "wf[A](r)"
apply (unfold wf_on_def wf_def)
apply (rule equals0I [THEN disjCI, THEN allI])
apply (rule_tac Z = Z in prem, blast+)
done
text\<open>If @{term r} allows well-founded induction over @{term A}
then we have @{term "wf[A](r)"}. Premise is equivalent to
@{prop "!!B. \<forall>x\<in>A. (\<forall>y. <y,x>: r \<longrightarrow> y \<in> B) \<longrightarrow> x \<in> B ==> A<=B"}\<close>
lemma wf_onI2:
assumes prem: "!!y B. [| \<forall>x\<in>A. (\<forall>y\<in>A. <y,x>:r \<longrightarrow> y \<in> B) \<longrightarrow> x \<in> B; y \<in> A |]
==> y \<in> B"
shows "wf[A](r)"
apply (rule wf_onI)
apply (rule_tac c=u in prem [THEN DiffE])
prefer 3 apply blast
apply fast+
done
subsubsection\<open>Well-founded Induction\<close>
text\<open>Consider the least @{term z} in @{term "domain(r)"} such that
@{term "P(z)"} does not hold...\<close>
lemma wf_induct_raw:
"[| wf(r);
!!x.[| \<forall>y. <y,x>: r \<longrightarrow> P(y) |] ==> P(x) |]
==> P(a)"
apply (unfold wf_def)
apply (erule_tac x = "{z \<in> domain(r). ~ P(z)}" in allE)
apply blast
done
lemmas wf_induct = wf_induct_raw [rule_format, consumes 1, case_names step, induct set: wf]
text\<open>The form of this rule is designed to match \<open>wfI\<close>\<close>
lemma wf_induct2:
"[| wf(r); a \<in> A; field(r)<=A;
!!x.[| x \<in> A; \<forall>y. <y,x>: r \<longrightarrow> P(y) |] ==> P(x) |]
==> P(a)"
apply (erule_tac P="a \<in> A" in rev_mp)
apply (erule_tac a=a in wf_induct, blast)
done
lemma field_Int_square: "field(r \<inter> A*A) \<subseteq> A"
by blast
lemma wf_on_induct_raw [consumes 2, induct set: wf_on]:
"[| wf[A](r); a \<in> A;
!!x.[| x \<in> A; \<forall>y\<in>A. <y,x>: r \<longrightarrow> P(y) |] ==> P(x)
|] ==> P(a)"
apply (unfold wf_on_def)
apply (erule wf_induct2, assumption)
apply (rule field_Int_square, blast)
done
lemmas wf_on_induct =
wf_on_induct_raw [rule_format, consumes 2, case_names step, induct set: wf_on]
text\<open>If @{term r} allows well-founded induction
then we have @{term "wf(r)"}.\<close>
lemma wfI:
"[| field(r)<=A;
!!y B. [| \<forall>x\<in>A. (\<forall>y\<in>A. <y,x>:r \<longrightarrow> y \<in> B) \<longrightarrow> x \<in> B; y \<in> A|]
==> y \<in> B |]
==> wf(r)"
apply (rule wf_on_subset_A [THEN wf_on_field_imp_wf])
apply (rule wf_onI2)
prefer 2 apply blast
apply blast
done
subsection\<open>Basic Properties of Well-Founded Relations\<close>
lemma wf_not_refl: "wf(r) ==> <a,a> \<notin> r"
by (erule_tac a=a in wf_induct, blast)
lemma wf_not_sym [rule_format]: "wf(r) ==> \<forall>x. <a,x>:r \<longrightarrow> <x,a> \<notin> r"
by (erule_tac a=a in wf_induct, blast)
(* @{term"[| wf(r); <a,x> \<in> r; ~P ==> <x,a> \<in> r |] ==> P"} *)
lemmas wf_asym = wf_not_sym [THEN swap]
lemma wf_on_not_refl: "[| wf[A](r); a \<in> A |] ==> <a,a> \<notin> r"
by (erule_tac a=a in wf_on_induct, assumption, blast)
lemma wf_on_not_sym [rule_format]:
"[| wf[A](r); a \<in> A |] ==> \<forall>b\<in>A. <a,b>:r \<longrightarrow> <b,a>\<notin>r"
apply (erule_tac a=a in wf_on_induct, assumption, blast)
done
lemma wf_on_asym:
"[| wf[A](r); ~Z ==> <a,b> \<in> r;
<b,a> \<notin> r ==> Z; ~Z ==> a \<in> A; ~Z ==> b \<in> A |] ==> Z"
by (blast dest: wf_on_not_sym)
(*Needed to prove well_ordI. Could also reason that wf[A](r) means
wf(r \<inter> A*A); thus wf( (r \<inter> A*A)^+ ) and use wf_not_refl *)
lemma wf_on_chain3:
"[| wf[A](r); <a,b>:r; <b,c>:r; <c,a>:r; a \<in> A; b \<in> A; c \<in> A |] ==> P"
apply (subgoal_tac "\<forall>y\<in>A. \<forall>z\<in>A. <a,y>:r \<longrightarrow> <y,z>:r \<longrightarrow> <z,a>:r \<longrightarrow> P",
blast)
apply (erule_tac a=a in wf_on_induct, assumption, blast)
done
text\<open>transitive closure of a WF relation is WF provided
@{term A} is downward closed\<close>
lemma wf_on_trancl:
"[| wf[A](r); r-``A \<subseteq> A |] ==> wf[A](r^+)"
apply (rule wf_onI2)
apply (frule bspec [THEN mp], assumption+)
apply (erule_tac a = y in wf_on_induct, assumption)
apply (blast elim: tranclE, blast)
done
lemma wf_trancl: "wf(r) ==> wf(r^+)"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A)
apply (erule wf_on_trancl)
apply blast
apply (rule trancl_type [THEN field_rel_subset])
done
text\<open>@{term "r-``{a}"} is the set of everything under @{term a} in @{term r}\<close>
lemmas underI = vimage_singleton_iff [THEN iffD2]
lemmas underD = vimage_singleton_iff [THEN iffD1]
subsection\<open>The Predicate @{term is_recfun}\<close>
lemma is_recfun_type: "is_recfun(r,a,H,f) ==> f \<in> r-``{a} -> range(f)"
apply (unfold is_recfun_def)
apply (erule ssubst)
apply (rule lamI [THEN rangeI, THEN lam_type], assumption)
done
lemmas is_recfun_imp_function = is_recfun_type [THEN fun_is_function]
lemma apply_recfun:
"[| is_recfun(r,a,H,f); <x,a>:r |] ==> f`x = H(x, restrict(f,r-``{x}))"
apply (unfold is_recfun_def)
txt\<open>replace f only on the left-hand side\<close>
apply (erule_tac P = "%x. t(x) = u" for t u in ssubst)
apply (simp add: underI)
done
lemma is_recfun_equal [rule_format]:
"[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,b,H,g) |]
==> <x,a>:r \<longrightarrow> <x,b>:r \<longrightarrow> f`x=g`x"
apply (frule_tac f = f in is_recfun_type)
apply (frule_tac f = g in is_recfun_type)
apply (simp add: is_recfun_def)
apply (erule_tac a=x in wf_induct)
apply (intro impI)
apply (elim ssubst)
apply (simp (no_asm_simp) add: vimage_singleton_iff restrict_def)
apply (rule_tac t = "%z. H (x, z)" for x in subst_context)
apply (subgoal_tac "\<forall>y\<in>r-``{x}. \<forall>z. <y,z>:f \<longleftrightarrow> <y,z>:g")
apply (blast dest: transD)
apply (simp add: apply_iff)
apply (blast dest: transD intro: sym)
done
lemma is_recfun_cut:
"[| wf(r); trans(r);
is_recfun(r,a,H,f); is_recfun(r,b,H,g); <b,a>:r |]
==> restrict(f, r-``{b}) = g"
apply (frule_tac f = f in is_recfun_type)
apply (rule fun_extension)
apply (blast dest: transD intro: restrict_type2)
apply (erule is_recfun_type, simp)
apply (blast dest: transD intro: is_recfun_equal)
done
subsection\<open>Recursion: Main Existence Lemma\<close>
lemma is_recfun_functional:
"[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,a,H,g) |] ==> f=g"
by (blast intro: fun_extension is_recfun_type is_recfun_equal)
lemma the_recfun_eq:
"[| is_recfun(r,a,H,f); wf(r); trans(r) |] ==> the_recfun(r,a,H) = f"
apply (unfold the_recfun_def)
apply (blast intro: is_recfun_functional)
done
(*If some f satisfies is_recfun(r,a,H,-) then so does the_recfun(r,a,H) *)
lemma is_the_recfun:
"[| is_recfun(r,a,H,f); wf(r); trans(r) |]
==> is_recfun(r, a, H, the_recfun(r,a,H))"
by (simp add: the_recfun_eq)
lemma unfold_the_recfun:
"[| wf(r); trans(r) |] ==> is_recfun(r, a, H, the_recfun(r,a,H))"
apply (rule_tac a=a in wf_induct, assumption)
apply (rename_tac a1)
apply (rule_tac f = "\<lambda>y\<in>r-``{a1}. wftrec (r,y,H)" in is_the_recfun)
apply typecheck
apply (unfold is_recfun_def wftrec_def)
\<comment> \<open>Applying the substitution: must keep the quantified assumption!\<close>
apply (rule lam_cong [OF refl])
apply (drule underD)
apply (fold is_recfun_def)
apply (rule_tac t = "%z. H(x, z)" for x in subst_context)
apply (rule fun_extension)
apply (blast intro: is_recfun_type)
apply (rule lam_type [THEN restrict_type2])
apply blast
apply (blast dest: transD)
apply atomize
apply (frule spec [THEN mp], assumption)
apply (subgoal_tac "<xa,a1> \<in> r")
apply (drule_tac x1 = xa in spec [THEN mp], assumption)
apply (simp add: vimage_singleton_iff
apply_recfun is_recfun_cut)
apply (blast dest: transD)
done
subsection\<open>Unfolding @{term "wftrec(r,a,H)"}\<close>
lemma the_recfun_cut:
"[| wf(r); trans(r); <b,a>:r |]
==> restrict(the_recfun(r,a,H), r-``{b}) = the_recfun(r,b,H)"
by (blast intro: is_recfun_cut unfold_the_recfun)
(*NOT SUITABLE FOR REWRITING: it is recursive!*)
lemma wftrec:
"[| wf(r); trans(r) |] ==>
wftrec(r,a,H) = H(a, \<lambda>x\<in>r-``{a}. wftrec(r,x,H))"
apply (unfold wftrec_def)
apply (subst unfold_the_recfun [unfolded is_recfun_def])
apply (simp_all add: vimage_singleton_iff [THEN iff_sym] the_recfun_cut)
done
subsubsection\<open>Removal of the Premise @{term "trans(r)"}\<close>
(*NOT SUITABLE FOR REWRITING: it is recursive!*)
lemma wfrec:
"wf(r) ==> wfrec(r,a,H) = H(a, \<lambda>x\<in>r-``{a}. wfrec(r,x,H))"
apply (unfold wfrec_def)
apply (erule wf_trancl [THEN wftrec, THEN ssubst])
apply (rule trans_trancl)
apply (rule vimage_pair_mono [THEN restrict_lam_eq, THEN subst_context])
apply (erule r_into_trancl)
apply (rule subset_refl)
done
(*This form avoids giant explosions in proofs. NOTE USE OF == *)
lemma def_wfrec:
"[| !!x. h(x)==wfrec(r,x,H); wf(r) |] ==>
h(a) = H(a, \<lambda>x\<in>r-``{a}. h(x))"
apply simp
apply (elim wfrec)
done
lemma wfrec_type:
"[| wf(r); a \<in> A; field(r)<=A;
!!x u. [| x \<in> A; u \<in> Pi(r-``{x}, B) |] ==> H(x,u) \<in> B(x)
|] ==> wfrec(r,a,H) \<in> B(a)"
apply (rule_tac a = a in wf_induct2, assumption+)
apply (subst wfrec, assumption)
apply (simp add: lam_type underD)
done
lemma wfrec_on:
"[| wf[A](r); a \<in> A |] ==>
wfrec[A](r,a,H) = H(a, \<lambda>x\<in>(r-``{a}) \<inter> A. wfrec[A](r,x,H))"
apply (unfold wf_on_def wfrec_on_def)
apply (erule wfrec [THEN trans])
apply (simp add: vimage_Int_square cons_subset_iff)
done
text\<open>Minimal-element characterization of well-foundedness\<close>
lemma wf_eq_minimal:
"wf(r) \<longleftrightarrow> (\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. <y,z>:r \<longrightarrow> y\<notin>Q))"
by (unfold wf_def, blast)
end