(* Title: Pure/Pure.thy
ID: $Id$
*)
header {* The Pure theory *}
theory Pure
imports ProtoPure
begin
setup -- {* Common setup of internal components *}
subsection {* Meta-level connectives in assumptions *}
lemma meta_mp:
assumes "PROP P ==> PROP Q" and "PROP P"
shows "PROP Q"
by (rule `PROP P ==> PROP Q` [OF `PROP P`])
lemmas meta_impE = meta_mp [elim_format]
lemma meta_spec:
assumes "!!x. PROP P(x)"
shows "PROP P(x)"
by (rule `!!x. PROP P(x)`)
lemmas meta_allE = meta_spec [elim_format]
subsection {* Embedded terms *}
locale (open) meta_term_syntax =
fixes meta_term :: "'a => prop" ("TERM _")
parse_translation {*
[("\<^fixed>meta_term", fn [t] => Const ("ProtoPure.term", dummyT --> propT) $ t)]
*}
lemmas [intro?] = termI
subsection {* Meta-level conjunction *}
locale (open) meta_conjunction_syntax =
fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2)
parse_translation {*
[("\<^fixed>meta_conjunction", fn [t, u] => Logic.mk_conjunction (t, u))]
*}
lemma all_conjunction:
includes meta_conjunction_syntax
shows "(!!x. PROP A(x) && PROP B(x)) == ((!!x. PROP A(x)) && (!!x. PROP B(x)))"
proof
assume conj: "!!x. PROP A(x) && PROP B(x)"
show "(\<And>x. PROP A(x)) && (\<And>x. PROP B(x))"
proof -
fix x
from conj show "PROP A(x)" by (rule conjunctionD1)
from conj show "PROP B(x)" by (rule conjunctionD2)
qed
next
assume conj: "(!!x. PROP A(x)) && (!!x. PROP B(x))"
fix x
show "PROP A(x) && PROP B(x)"
proof -
show "PROP A(x)" by (rule conj [THEN conjunctionD1, rule_format])
show "PROP B(x)" by (rule conj [THEN conjunctionD2, rule_format])
qed
qed
lemma imp_conjunction:
includes meta_conjunction_syntax
shows "(PROP A ==> PROP B && PROP C) == (PROP A ==> PROP B) && (PROP A ==> PROP C)"
proof
assume conj: "PROP A ==> PROP B && PROP C"
show "(PROP A ==> PROP B) && (PROP A ==> PROP C)"
proof -
assume "PROP A"
from conj [OF `PROP A`] show "PROP B" by (rule conjunctionD1)
from conj [OF `PROP A`] show "PROP C" by (rule conjunctionD2)
qed
next
assume conj: "(PROP A ==> PROP B) && (PROP A ==> PROP C)"
assume "PROP A"
show "PROP B && PROP C"
proof -
from `PROP A` show "PROP B" by (rule conj [THEN conjunctionD1])
from `PROP A` show "PROP C" by (rule conj [THEN conjunctionD2])
qed
qed
lemma conjunction_imp:
includes meta_conjunction_syntax
shows "(PROP A && PROP B ==> PROP C) == (PROP A ==> PROP B ==> PROP C)"
proof
assume r: "PROP A && PROP B ==> PROP C"
assume ab: "PROP A" "PROP B"
show "PROP C"
proof (rule r)
from ab show "PROP A && PROP B" .
qed
next
assume r: "PROP A ==> PROP B ==> PROP C"
assume conj: "PROP A && PROP B"
show "PROP C"
proof (rule r)
from conj show "PROP A" by (rule conjunctionD1)
from conj show "PROP B" by (rule conjunctionD2)
qed
qed
end