(*  Title:      HOL/HOLCF/Discrete.thy
    Author:     Tobias Nipkow
*)
section \<open>Discrete cpo types\<close>
theory Discrete
  imports Cont
begin
datatype 'a discr = Discr "'a :: type"
subsection \<open>Discrete cpo class instance\<close>
instantiation discr :: (type) discrete_cpo
begin
definition "((\<sqsubseteq>) :: 'a discr \<Rightarrow> 'a discr \<Rightarrow> bool) = (=)"
instance
  by standard (simp add: below_discr_def)
end
subsection \<open>\emph{undiscr}\<close>
definition undiscr :: "('a::type)discr \<Rightarrow> 'a"
  where "undiscr x = (case x of Discr y \<Rightarrow> y)"
lemma undiscr_Discr [simp]: "undiscr (Discr x) = x"
  by (simp add: undiscr_def)
lemma Discr_undiscr [simp]: "Discr (undiscr y) = y"
  by (induct y) simp
end