(* Title: Pure/Isar/context_rules.ML
Author: Stefan Berghofer and Markus Wenzel, TU Muenchen
Declarations of intro/elim/dest rules in Pure (see also
Provers/classical.ML for a more specialized version of the same idea).
*)
signature CONTEXT_RULES =
sig
type netpair = ((int * int) * (bool * thm)) Net.net * ((int * int) * (bool * thm)) Net.net
val netpair_bang: Proof.context -> netpair
val netpair: Proof.context -> netpair
val orderlist: ((int * int) * 'a) list -> 'a list
val find_rules_netpair: Proof.context -> bool -> thm list -> term -> netpair -> thm list
val find_rules: Proof.context -> bool -> thm list -> term -> thm list list
val print_rules: Proof.context -> unit
val addSWrapper: (Proof.context -> (int -> tactic) -> int -> tactic) -> theory -> theory
val addWrapper: (Proof.context -> (int -> tactic) -> int -> tactic) -> theory -> theory
val Swrap: Proof.context -> (int -> tactic) -> int -> tactic
val wrap: Proof.context -> (int -> tactic) -> int -> tactic
val intro_bang: int option -> attribute
val elim_bang: int option -> attribute
val dest_bang: int option -> attribute
val intro: int option -> attribute
val elim: int option -> attribute
val dest: int option -> attribute
val intro_query: int option -> attribute
val elim_query: int option -> attribute
val dest_query: int option -> attribute
val rule_del: attribute
val add: (int option -> attribute) -> (int option -> attribute) -> (int option -> attribute) ->
attribute context_parser
end;
structure Context_Rules: CONTEXT_RULES =
struct
(** rule declaration contexts **)
(* rule kinds *)
val intro_bangK = (0, false);
val elim_bangK = (0, true);
val introK = (1, false);
val elimK = (1, true);
val intro_queryK = (2, false);
val elim_queryK = (2, true);
val kind_names =
[(intro_bangK, "safe introduction rules (intro!)"),
(elim_bangK, "safe elimination rules (elim!)"),
(introK, "introduction rules (intro)"),
(elimK, "elimination rules (elim)"),
(intro_queryK, "extra introduction rules (intro?)"),
(elim_queryK, "extra elimination rules (elim?)")];
val rule_kinds = map #1 kind_names;
val rule_indexes = distinct (op =) (map #1 rule_kinds);
(* context data *)
type netpair = ((int * int) * (bool * thm)) Net.net * ((int * int) * (bool * thm)) Net.net;
val empty_netpairs: netpair list = replicate (length rule_indexes) (Net.empty, Net.empty);
datatype rules = Rules of
{next: int,
rules: (int * ((int * bool) * thm)) list,
netpairs: netpair list,
wrappers:
((Proof.context -> (int -> tactic) -> int -> tactic) * stamp) list *
((Proof.context -> (int -> tactic) -> int -> tactic) * stamp) list};
fun make_rules next rules netpairs wrappers =
Rules {next = next, rules = rules, netpairs = netpairs, wrappers = wrappers};
fun add_rule (i, b) opt_w th (Rules {next, rules, netpairs, wrappers}) =
let
val w = opt_w |> \<^if_none>\<open>Tactic.subgoals_of_brl (b, th)\<close>;
val th' = Thm.trim_context th;
in
make_rules (next - 1) ((w, ((i, b), th')) :: rules)
(nth_map i (Tactic.insert_tagged_brl ((w, next), (b, th'))) netpairs) wrappers
end;
fun del_rule0 th (rs as Rules {next, rules, netpairs, wrappers}) =
let
fun eq_th (_, (_, th')) = Thm.eq_thm_prop (th, th');
fun del b netpair = Tactic.delete_tagged_brl (b, th) netpair handle Net.DELETE => netpair;
in
if not (exists eq_th rules) then rs
else make_rules next (filter_out eq_th rules) (map (del false o del true) netpairs) wrappers
end;
fun del_rule th = del_rule0 th o del_rule0 (Tactic.make_elim th);
structure Rules = Generic_Data
(
type T = rules;
val empty = make_rules ~1 [] empty_netpairs ([], []);
fun merge
(Rules {rules = rules1, wrappers = (ws1, ws1'), ...},
Rules {rules = rules2, wrappers = (ws2, ws2'), ...}) =
let
val wrappers =
(Library.merge (eq_snd (op =)) (ws1, ws2), Library.merge (eq_snd (op =)) (ws1', ws2'));
val rules = Library.merge (fn ((_, (k1, th1)), (_, (k2, th2))) =>
k1 = k2 andalso Thm.eq_thm_prop (th1, th2)) (rules1, rules2);
val next = ~ (length rules);
val netpairs = fold (fn (n, (w, ((i, b), th))) =>
nth_map i (Tactic.insert_tagged_brl ((w, n), (b, th))))
(next upto ~1 ~~ rules) empty_netpairs;
in make_rules (next - 1) rules netpairs wrappers end;
);
fun print_rules ctxt =
let
val Rules {rules, ...} = Rules.get (Context.Proof ctxt);
fun prt_kind (i, b) =
Pretty.big_list ((the o AList.lookup (op =) kind_names) (i, b) ^ ":")
(map_filter (fn (_, (k, th)) =>
if k = (i, b) then SOME (Thm.pretty_thm_item ctxt th) else NONE)
(sort (int_ord o apply2 fst) rules));
in Pretty.writeln_chunks (map prt_kind rule_kinds) end;
(* access data *)
fun netpairs ctxt = let val Rules {netpairs, ...} = Rules.get (Context.Proof ctxt) in netpairs end;
val netpair_bang = hd o netpairs;
val netpair = hd o tl o netpairs;
(* retrieving rules *)
fun untaglist [] = []
| untaglist [(_ : int * int, x)] = [x]
| untaglist ((k, x) :: (rest as (k', _) :: _)) =
if k = k' then untaglist rest
else x :: untaglist rest;
fun orderlist brls =
untaglist (sort (prod_ord int_ord int_ord o apply2 fst) brls);
fun orderlist_no_weight brls =
untaglist (sort (int_ord o apply2 (snd o fst)) brls);
local
fun may_unify weighted t net =
map snd ((if weighted then orderlist else orderlist_no_weight) (Net.unify_term net t));
fun find_erules _ [] = K []
| find_erules w (fact :: _) = may_unify w (Logic.strip_assums_concl (Thm.prop_of fact));
fun find_irules w goal = may_unify w (Logic.strip_assums_concl goal);
in
fun find_rules_netpair ctxt weighted facts goal (inet, enet) =
find_erules weighted facts enet @ find_irules weighted goal inet
|> map (Thm.transfer' ctxt);
fun find_rules ctxt weighted facts goal =
map (find_rules_netpair ctxt weighted facts goal) (netpairs ctxt);
end;
(* wrappers *)
fun gen_add_wrapper upd w =
Context.theory_map (Rules.map (fn Rules {next, rules, netpairs, wrappers} =>
make_rules next rules netpairs (upd (fn ws => (w, stamp ()) :: ws) wrappers)));
val addSWrapper = gen_add_wrapper Library.apfst;
val addWrapper = gen_add_wrapper Library.apsnd;
fun gen_wrap which ctxt =
let val Rules {wrappers, ...} = Rules.get (Context.Proof ctxt)
in fold_rev (fn (w, _) => w ctxt) (which wrappers) end;
val Swrap = gen_wrap #1;
val wrap = gen_wrap #2;
(** attributes **)
(* add and del rules *)
val rule_del = Thm.declaration_attribute (Rules.map o del_rule);
fun rule_add k view opt_w =
Thm.declaration_attribute (fn th => Rules.map (add_rule k opt_w (view th) o del_rule th));
val intro_bang = rule_add intro_bangK I;
val elim_bang = rule_add elim_bangK I;
val dest_bang = rule_add elim_bangK Tactic.make_elim;
val intro = rule_add introK I;
val elim = rule_add elimK I;
val dest = rule_add elimK Tactic.make_elim;
val intro_query = rule_add intro_queryK I;
val elim_query = rule_add elim_queryK I;
val dest_query = rule_add elim_queryK Tactic.make_elim;
val _ = Theory.setup
(snd o Global_Theory.add_thms [((Binding.empty, Drule.equal_intr_rule), [intro_query NONE])]);
(* concrete syntax *)
fun add a b c x =
(Scan.lift ((Args.bang >> K a || Args.query >> K c || Scan.succeed b) --
Scan.option Parse.nat) >> (fn (f, n) => f n)) x;
val _ = Theory.setup
(Attrib.setup \<^binding>\<open>intro\<close> (add intro_bang intro intro_query)
"declaration of introduction rule" #>
Attrib.setup \<^binding>\<open>elim\<close> (add elim_bang elim elim_query)
"declaration of elimination rule" #>
Attrib.setup \<^binding>\<open>dest\<close> (add dest_bang dest dest_query)
"declaration of destruction rule" #>
Attrib.setup \<^binding>\<open>rule\<close> (Scan.lift Args.del >> K rule_del)
"remove declaration of intro/elim/dest rule");
end;