(* Title: Pure/Isar/method.ML
Author: Markus Wenzel, TU Muenchen
Isar proof methods.
*)
signature METHOD =
sig
type method = thm list -> context_tactic
val CONTEXT_METHOD: (thm list -> context_tactic) -> method
val METHOD: (thm list -> tactic) -> method
val fail: method
val succeed: method
val insert_tac: Proof.context -> thm list -> int -> tactic
val insert: thm list -> method
val SIMPLE_METHOD: tactic -> method
val SIMPLE_METHOD': (int -> tactic) -> method
val SIMPLE_METHOD'': ((int -> tactic) -> tactic) -> (int -> tactic) -> method
val goal_cases_tac: string list -> context_tactic
val cheating: bool -> method
val intro: Proof.context -> thm list -> method
val elim: Proof.context -> thm list -> method
val unfold: thm list -> Proof.context -> method
val fold: thm list -> Proof.context -> method
val atomize: bool -> Proof.context -> method
val this: Proof.context -> method
val fact: thm list -> Proof.context -> method
val assm_tac: Proof.context -> int -> tactic
val all_assm_tac: Proof.context -> tactic
val assumption: Proof.context -> method
val rule_trace: bool Config.T
val trace: Proof.context -> thm list -> unit
val rule_tac: Proof.context -> thm list -> thm list -> int -> tactic
val some_rule_tac: Proof.context -> thm list -> thm list -> int -> tactic
val intros_tac: Proof.context -> thm list -> thm list -> tactic
val try_intros_tac: Proof.context -> thm list -> thm list -> tactic
val rule: Proof.context -> thm list -> method
val erule: Proof.context -> int -> thm list -> method
val drule: Proof.context -> int -> thm list -> method
val frule: Proof.context -> int -> thm list -> method
val method_space: Context.generic -> Name_Space.T
val set_tactic: (morphism -> thm list -> tactic) -> Context.generic -> Context.generic
val clean_facts: thm list -> thm list
val set_facts: thm list -> Proof.context -> Proof.context
val get_facts: Proof.context -> thm list
type combinator_info
val no_combinator_info: combinator_info
datatype combinator = Then | Then_All_New | Orelse | Try | Repeat1 | Select_Goals of int
datatype text =
Source of Token.src |
Basic of Proof.context -> method |
Combinator of combinator_info * combinator * text list
val map_source: (Token.src -> Token.src) -> text -> text
val primitive_text: (Proof.context -> thm -> thm) -> text
val succeed_text: text
val standard_text: text
val this_text: text
val done_text: text
val sorry_text: bool -> text
val finish_text: text option * bool -> text
val print_methods: bool -> Proof.context -> unit
val check_name: Proof.context -> xstring * Position.T -> string
val check_src: Proof.context -> Token.src -> Token.src
val check_text: Proof.context -> text -> text
val checked_text: text -> bool
val method_syntax: (Proof.context -> method) context_parser ->
Token.src -> Proof.context -> method
val setup: binding -> (Proof.context -> method) context_parser -> string -> theory -> theory
val local_setup: binding -> (Proof.context -> method) context_parser -> string ->
local_theory -> local_theory
val method_setup: bstring * Position.T -> Input.source -> string -> local_theory -> local_theory
val method: Proof.context -> Token.src -> Proof.context -> method
val method_closure: Proof.context -> Token.src -> Token.src
val closure: bool Config.T
val method_cmd: Proof.context -> Token.src -> Proof.context -> method
val detect_closure_state: thm -> bool
val STATIC: (unit -> unit) -> context_tactic
val RUNTIME: context_tactic -> context_tactic
val sleep: Time.time -> context_tactic
val evaluate: text -> Proof.context -> method
val evaluate_runtime: text -> Proof.context -> method
type modifier = {init: Proof.context -> Proof.context, attribute: attribute, pos: Position.T}
val modifier: attribute -> Position.T -> modifier
val old_section_parser: bool Config.T
val sections: modifier parser list -> unit context_parser
type text_range = text * Position.range
val text: text_range option -> text option
val position: text_range option -> Position.T
val reports_of: text_range -> Position.report list
val report: text_range -> unit
val parser: int -> text_range parser
val parse: text_range parser
val parse_by: ((text_range * text_range option) * Position.report list) parser
val read: Proof.context -> Token.src -> text
val read_closure: Proof.context -> Token.src -> text * Token.src
val read_closure_input: Proof.context -> Input.source -> text * Token.src
val text_closure: text context_parser
end;
structure Method: METHOD =
struct
(** proof methods **)
(* type method *)
type method = thm list -> context_tactic;
fun CONTEXT_METHOD tac : method =
fn facts => CONTEXT_TACTIC (ALLGOALS Goal.conjunction_tac) #> Seq.maps_results (tac facts);
fun METHOD tac : method =
fn facts => CONTEXT_TACTIC (ALLGOALS Goal.conjunction_tac THEN tac facts);
val fail = METHOD (K no_tac);
val succeed = METHOD (K all_tac);
(* insert facts *)
fun insert_tac _ [] _ = all_tac
| insert_tac ctxt facts i =
EVERY (map (fn r => resolve_tac ctxt [Thm.forall_intr_vars r COMP_INCR revcut_rl] i) facts);
fun insert thms =
CONTEXT_METHOD (fn _ => fn (ctxt, st) =>
st |> ALLGOALS (insert_tac ctxt thms) |> TACTIC_CONTEXT ctxt);
fun SIMPLE_METHOD tac =
CONTEXT_METHOD (fn facts => fn (ctxt, st) =>
st |> (ALLGOALS (insert_tac ctxt facts) THEN tac) |> TACTIC_CONTEXT ctxt);
fun SIMPLE_METHOD'' quant tac =
CONTEXT_METHOD (fn facts => fn (ctxt, st) =>
st |> quant (insert_tac ctxt facts THEN' tac) |> TACTIC_CONTEXT ctxt);
val SIMPLE_METHOD' = SIMPLE_METHOD'' HEADGOAL;
(* goals as cases *)
fun goal_cases_tac case_names : context_tactic =
fn (ctxt, st) =>
let
val cases =
(if null case_names then map string_of_int (1 upto Thm.nprems_of st) else case_names)
|> map (rpair [] o rpair [])
|> Rule_Cases.make_common ctxt (Thm.prop_of (Rule_Cases.internalize_params st));
in CONTEXT_CASES cases all_tac (ctxt, st) end;
(* cheating *)
fun cheating int = CONTEXT_METHOD (fn _ => fn (ctxt, st) =>
if int orelse Config.get ctxt quick_and_dirty then
TACTIC_CONTEXT ctxt (ALLGOALS (Skip_Proof.cheat_tac ctxt) st)
else error "Cheating requires quick_and_dirty mode!");
(* unfold intro/elim rules *)
fun intro ctxt ths = SIMPLE_METHOD' (CHANGED_PROP o REPEAT_ALL_NEW (match_tac ctxt ths));
fun elim ctxt ths = SIMPLE_METHOD' (CHANGED_PROP o REPEAT_ALL_NEW (ematch_tac ctxt ths));
(* unfold/fold definitions *)
fun unfold_meth ths ctxt = SIMPLE_METHOD (CHANGED_PROP (Local_Defs.unfold_tac ctxt ths));
fun fold_meth ths ctxt = SIMPLE_METHOD (CHANGED_PROP (Local_Defs.fold_tac ctxt ths));
(* atomize rule statements *)
fun atomize false ctxt =
SIMPLE_METHOD' (CHANGED_PROP o Object_Logic.atomize_prems_tac ctxt)
| atomize true ctxt =
Context_Tactic.CONTEXT_TACTIC o
K (HEADGOAL (CHANGED_PROP o Object_Logic.full_atomize_tac ctxt));
(* this -- resolve facts directly *)
fun this ctxt = METHOD (EVERY o map (HEADGOAL o resolve_tac ctxt o single));
(* fact -- composition by facts from context *)
fun fact [] ctxt = SIMPLE_METHOD' (Proof_Context.some_fact_tac ctxt)
| fact rules ctxt = SIMPLE_METHOD' (Proof_Context.fact_tac ctxt rules);
(* assumption *)
local
fun cond_rtac ctxt cond rule = SUBGOAL (fn (prop, i) =>
if cond (Logic.strip_assums_concl prop)
then resolve_tac ctxt [rule] i else no_tac);
in
fun assm_tac ctxt =
assume_tac ctxt APPEND'
Goal.assume_rule_tac ctxt APPEND'
cond_rtac ctxt (can Logic.dest_equals) Drule.reflexive_thm APPEND'
cond_rtac ctxt (can Logic.dest_term) Drule.termI;
fun all_assm_tac ctxt =
let
fun tac i st =
if i > Thm.nprems_of st then all_tac st
else ((assm_tac ctxt i THEN tac i) ORELSE tac (i + 1)) st;
in tac 1 end;
fun assumption ctxt = METHOD (HEADGOAL o
(fn [] => assm_tac ctxt
| [fact] => solve_tac ctxt [fact]
| _ => K no_tac));
fun finish immed ctxt =
METHOD (K ((if immed then all_assm_tac ctxt else all_tac) THEN flexflex_tac ctxt));
end;
(* rule etc. -- single-step refinements *)
val rule_trace = Attrib.setup_config_bool \<^binding>\<open>rule_trace\<close> (fn _ => false);
fun trace ctxt rules =
if Config.get ctxt rule_trace andalso not (null rules) then
Pretty.big_list "rules:" (map (Thm.pretty_thm_item ctxt) rules)
|> Pretty.string_of |> tracing
else ();
local
fun gen_rule_tac tac ctxt rules facts =
(fn i => fn st =>
if null facts then tac ctxt rules i st
else
Seq.maps (fn rule => (tac ctxt o single) rule i st)
(Drule.multi_resolves (SOME ctxt) facts rules))
THEN_ALL_NEW Goal.norm_hhf_tac ctxt;
fun gen_arule_tac tac ctxt j rules facts =
EVERY' (gen_rule_tac tac ctxt rules facts :: replicate j (assume_tac ctxt));
fun gen_some_rule_tac tac ctxt arg_rules facts = SUBGOAL (fn (goal, i) =>
let
val rules =
if not (null arg_rules) then arg_rules
else flat (Context_Rules.find_rules ctxt false facts goal);
in trace ctxt rules; tac ctxt rules facts i end);
fun meth tac x y = METHOD (HEADGOAL o tac x y);
fun meth' tac x y z = METHOD (HEADGOAL o tac x y z);
in
val rule_tac = gen_rule_tac resolve_tac;
val rule = meth rule_tac;
val some_rule_tac = gen_some_rule_tac rule_tac;
val some_rule = meth some_rule_tac;
val erule = meth' (gen_arule_tac eresolve_tac);
val drule = meth' (gen_arule_tac dresolve_tac);
val frule = meth' (gen_arule_tac forward_tac);
end;
(* intros_tac -- pervasive search spanned by intro rules *)
fun gen_intros_tac goals ctxt intros facts =
goals (insert_tac ctxt facts THEN'
REPEAT_ALL_NEW (resolve_tac ctxt intros))
THEN Tactic.distinct_subgoals_tac;
val intros_tac = gen_intros_tac ALLGOALS;
val try_intros_tac = gen_intros_tac TRYALL;
(** method syntax **)
(* context data *)
structure Data = Generic_Data
(
type T =
{methods: ((Token.src -> Proof.context -> method) * string) Name_Space.table,
ml_tactic: (morphism -> thm list -> tactic) option,
facts: thm list option};
val empty : T =
{methods = Name_Space.empty_table Markup.methodN, ml_tactic = NONE, facts = NONE};
fun merge
({methods = methods1, ml_tactic = ml_tactic1, facts = facts1},
{methods = methods2, ml_tactic = ml_tactic2, facts = facts2}) : T =
{methods = Name_Space.merge_tables (methods1, methods2),
ml_tactic = merge_options (ml_tactic1, ml_tactic2),
facts = merge_options (facts1, facts2)};
);
fun map_data f = Data.map (fn {methods, ml_tactic, facts} =>
let val (methods', ml_tactic', facts') = f (methods, ml_tactic, facts)
in {methods = methods', ml_tactic = ml_tactic', facts = facts'} end);
val get_methods = #methods o Data.get;
val ops_methods =
{get_data = get_methods,
put_data = fn methods => map_data (fn (_, ml_tactic, facts) => (methods, ml_tactic, facts))};
val method_space = Name_Space.space_of_table o get_methods;
(* ML tactic *)
fun set_tactic ml_tactic = map_data (fn (methods, _, facts) => (methods, SOME ml_tactic, facts));
fun the_tactic context =
#ml_tactic (Data.get context)
|> \<^if_none>\<open>raise Fail "Undefined ML tactic"\<close>;
val parse_tactic =
Scan.state :|-- (fn context =>
Scan.lift (Args.embedded_declaration (fn source =>
let
val tac =
context
|> ML_Context.expression (Input.pos_of source)
(ML_Lex.read "Context.>> (Method.set_tactic (fn morphism: Morphism.morphism => fn facts: thm list => (" @
ML_Lex.read_source source @ ML_Lex.read ")))")
|> the_tactic;
in
Morphism.entity (fn phi =>
set_tactic (fn _ => Context.setmp_generic_context (SOME context) (tac phi)))
end)) >> (fn decl => Morphism.form_entity (the_tactic (Morphism.form decl context))));
(* method facts *)
val clean_facts = filter_out Thm.is_dummy;
fun set_facts facts =
(Context.proof_map o map_data)
(fn (methods, ml_tactic, _) => (methods, ml_tactic, SOME (clean_facts facts)));
val get_facts_generic = these o #facts o Data.get;
val get_facts = get_facts_generic o Context.Proof;
val _ =
Theory.setup
(Global_Theory.add_thms_dynamic (Binding.make ("method_facts", \<^here>), get_facts_generic));
(* method text *)
datatype combinator_info = Combinator_Info of {keywords: Position.T list};
fun combinator_info keywords = Combinator_Info {keywords = keywords};
val no_combinator_info = combinator_info [];
datatype combinator = Then | Then_All_New | Orelse | Try | Repeat1 | Select_Goals of int;
datatype text =
Source of Token.src |
Basic of Proof.context -> method |
Combinator of combinator_info * combinator * text list;
fun map_source f (Source src) = Source (f src)
| map_source _ (Basic meth) = Basic meth
| map_source f (Combinator (info, comb, txts)) = Combinator (info, comb, map (map_source f) txts);
fun primitive_text r = Basic (SIMPLE_METHOD o PRIMITIVE o r);
val succeed_text = Basic (K succeed);
val standard_text = Source (Token.make_src ("standard", Position.none) []);
val this_text = Basic this;
val done_text = Basic (K (SIMPLE_METHOD all_tac));
fun sorry_text int = Basic (fn _ => cheating int);
fun finish_text (NONE, immed) = Basic (finish immed)
| finish_text (SOME txt, immed) =
Combinator (no_combinator_info, Then, [txt, Basic (finish immed)]);
(* method definitions *)
fun print_methods verbose ctxt =
let
val meths = get_methods (Context.Proof ctxt);
fun prt_meth (name, (_, "")) = Pretty.mark_str name
| prt_meth (name, (_, comment)) =
Pretty.block
(Pretty.mark_str name :: Pretty.str ":" :: Pretty.brk 2 :: Pretty.text comment);
in
[Pretty.big_list "methods:" (map prt_meth (Name_Space.markup_table verbose ctxt meths))]
|> Pretty.writeln_chunks
end;
(* define *)
fun define_global binding meth comment =
Entity.define_global ops_methods binding (meth, comment);
fun define binding meth comment =
Entity.define ops_methods binding (meth, comment);
(* check *)
fun check_name ctxt =
let val context = Context.Proof ctxt
in #1 o Name_Space.check context (get_methods context) end;
fun check_src ctxt =
#1 o Token.check_src ctxt (get_methods o Context.Proof);
fun check_text ctxt (Source src) = Source (check_src ctxt src)
| check_text _ (Basic m) = Basic m
| check_text ctxt (Combinator (x, y, body)) = Combinator (x, y, map (check_text ctxt) body);
fun checked_text (Source src) = Token.checked_src src
| checked_text (Basic _) = true
| checked_text (Combinator (_, _, body)) = forall checked_text body;
val _ = Theory.setup
(ML_Antiquotation.inline_embedded \<^binding>\<open>method\<close>
(Args.context -- Scan.lift Parse.embedded_position >>
(ML_Syntax.print_string o uncurry check_name)));
(* method setup *)
fun method_syntax scan src ctxt : method =
let val (m, ctxt') = Token.syntax scan src ctxt in m ctxt' end;
fun setup binding scan comment = define_global binding (method_syntax scan) comment #> snd;
fun local_setup binding scan comment = define binding (method_syntax scan) comment #> snd;
fun method_setup binding source comment =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read
("Theory.local_setup (Method.local_setup (" ^ ML_Syntax.make_binding binding ^ ") (") @
ML_Lex.read_source source @ ML_Lex.read (")" ^ ML_Syntax.print_string comment ^ ")"))
|> Context.proof_map;
(* prepare methods *)
fun method ctxt =
let val table = get_methods (Context.Proof ctxt)
in fn src => #1 (Name_Space.get table (#1 (Token.name_of_src src))) src end;
fun method_closure ctxt src =
let
val src' = map Token.init_assignable src;
val ctxt' = Context_Position.not_really ctxt;
val _ = Seq.pull (method ctxt' src' ctxt' [] (ctxt', Goal.protect 0 Drule.dummy_thm));
in map Token.closure src' end;
val closure = Config.declare_bool ("Method.closure", \<^here>) (K true);
fun method_cmd ctxt =
check_src ctxt #>
Config.get ctxt closure ? method_closure ctxt #>
method ctxt;
(* static vs. runtime state *)
fun detect_closure_state st =
(case try Logic.dest_term (Thm.concl_of (perhaps (try Goal.conclude) st)) of
NONE => false
| SOME t => Term.is_dummy_pattern t);
fun STATIC test : context_tactic =
fn (ctxt, st) =>
if detect_closure_state st then (test (); Seq.single (Seq.Result (ctxt, st))) else Seq.empty;
fun RUNTIME (tac: context_tactic) (ctxt, st) =
if detect_closure_state st then Seq.empty else tac (ctxt, st);
fun sleep t = RUNTIME (fn ctxt_st => (OS.Process.sleep t; Seq.single (Seq.Result ctxt_st)));
(* evaluate method text *)
local
val op THEN = Seq.THEN;
fun BYPASS_CONTEXT (tac: tactic) =
fn result =>
(case result of
Seq.Error _ => Seq.single result
| Seq.Result (ctxt, st) => tac st |> TACTIC_CONTEXT ctxt);
val preparation = BYPASS_CONTEXT (ALLGOALS Goal.conjunction_tac);
fun RESTRICT_GOAL i n method =
BYPASS_CONTEXT (PRIMITIVE (Goal.restrict i n)) THEN
method THEN
BYPASS_CONTEXT (PRIMITIVE (Goal.unrestrict i));
fun SELECT_GOAL method i = RESTRICT_GOAL i 1 method;
fun (method1 THEN_ALL_NEW method2) i (result : context_state Seq.result) =
(case result of
Seq.Error _ => Seq.single result
| Seq.Result (_, st) =>
result |> method1 i
|> Seq.maps (fn result' =>
(case result' of
Seq.Error _ => Seq.single result'
| Seq.Result (_, st') =>
result' |> Seq.INTERVAL method2 i (i + Thm.nprems_of st' - Thm.nprems_of st))))
fun COMBINATOR1 comb [meth] = comb meth
| COMBINATOR1 _ _ = raise Fail "Method combinator requires exactly one argument";
fun combinator Then = Seq.EVERY
| combinator Then_All_New =
(fn [] => Seq.single
| methods =>
preparation THEN (foldl1 (op THEN_ALL_NEW) (map SELECT_GOAL methods) 1))
| combinator Orelse = Seq.FIRST
| combinator Try = COMBINATOR1 Seq.TRY
| combinator Repeat1 = COMBINATOR1 Seq.REPEAT1
| combinator (Select_Goals n) =
COMBINATOR1 (fn method => preparation THEN RESTRICT_GOAL 1 n method);
in
fun evaluate text ctxt0 facts =
let
val ctxt = set_facts facts ctxt0;
fun eval0 m = Seq.single #> Seq.maps_results (m facts);
fun eval (Basic m) = eval0 (m ctxt)
| eval (Source src) = eval0 (method_cmd ctxt src ctxt)
| eval (Combinator (_, c, txts)) = combinator c (map eval txts);
in eval text o Seq.Result end;
end;
fun evaluate_runtime text ctxt =
let
val text' =
text |> (map_source o map o Token.map_facts)
(fn SOME name =>
(case Proof_Context.lookup_fact ctxt name of
SOME {dynamic = true, thms} => K thms
| _ => I)
| NONE => I);
val ctxt' = Config.put closure false ctxt;
in fn facts => RUNTIME (fn st => evaluate text' ctxt' facts st) end;
(** concrete syntax **)
(* type modifier *)
type modifier =
{init: Proof.context -> Proof.context, attribute: attribute, pos: Position.T};
fun modifier attribute pos : modifier = {init = I, attribute = attribute, pos = pos};
(* sections *)
val old_section_parser = Config.declare_bool ("Method.old_section_parser", \<^here>) (K false);
local
fun thms ss =
Scan.repeats (Scan.unless (Scan.lift (Scan.first ss)) Attrib.multi_thm);
fun app {init, attribute, pos = _} ths context =
fold_map (Thm.apply_attribute attribute) ths (Context.map_proof init context);
fun section ss = Scan.depend (fn context => (Scan.first ss -- Scan.pass context (thms ss)) :|--
(fn (m, ths) => Scan.succeed (swap (app m ths context))));
in
fun old_sections ss = Scan.repeat (section ss) >> K ();
end;
local
fun sect (modifier : modifier parser) = Scan.depend (fn context =>
Scan.ahead Parse.not_eof -- Scan.trace modifier -- Scan.repeat (Scan.unless modifier Parse.thm)
>> (fn ((tok0, ({init, attribute, pos}, modifier_toks)), xthms) =>
let
val decl =
(case Token.get_value tok0 of
SOME (Token.Declaration decl) => decl
| _ =>
let
val ctxt = Context.proof_of context;
val prep_att = Attrib.check_src ctxt #> map (Token.assign NONE);
val thms =
map (fn (a, bs) => (Proof_Context.get_fact ctxt a, map prep_att bs)) xthms;
val facts =
Attrib.partial_evaluation ctxt [((Binding.name "dummy", []), thms)]
|> map (fn (_, bs) =>
((Binding.empty, [Attrib.internal pos (K attribute)]),
Attrib.trim_context_thms bs));
val decl =
Morphism.entity (fn phi => fn context =>
let val psi = Morphism.set_context'' context phi in
context
|> Context.mapping I init
|> Attrib.generic_notes "" (Attrib.transform_facts psi facts)
|> snd
end);
val modifier_report =
(#1 (Token.range_of modifier_toks),
Position.entity_markup Markup.method_modifierN ("", pos));
val _ =
Context_Position.reports ctxt (modifier_report :: Token.reports_of_value tok0);
val _ = Token.assign (SOME (Token.Declaration decl)) tok0;
in decl end);
in (Morphism.form decl context, decl) end));
in
fun sections ss =
Args.context :|-- (fn ctxt =>
if Config.get ctxt old_section_parser then old_sections ss
else Scan.repeat (sect (Scan.first ss)) >> K ());
end;
(* extra rule methods *)
fun xrule_meth meth =
Scan.lift (Scan.optional (Args.parens Parse.nat) 0) -- Attrib.thms >>
(fn (n, ths) => fn ctxt => meth ctxt n ths);
(* text range *)
type text_range = text * Position.range;
fun text NONE = NONE
| text (SOME (txt, _)) = SOME txt;
fun position NONE = Position.none
| position (SOME (_, (pos, _))) = pos;
(* reports *)
local
fun keyword_positions (Source _) = []
| keyword_positions (Basic _) = []
| keyword_positions (Combinator (Combinator_Info {keywords}, _, texts)) =
keywords @ maps keyword_positions texts;
in
fun reports_of ((text, (pos, _)): text_range) =
(pos, Markup.language_method) ::
maps (fn p => map (pair p) (Markup.keyword3 :: Completion.suppress_abbrevs ""))
(keyword_positions text);
fun report text_range =
if Context_Position.reports_enabled0 ()
then Position.reports (reports_of text_range) else ();
end;
(* parser *)
local
fun is_symid_meth s =
s <> "|" andalso s <> "?" andalso s <> "+" andalso Token.ident_or_symbolic s;
in
fun parser pri =
let
val meth_name = Parse.token Parse.name;
fun meth5 x =
(meth_name >> (Source o single) ||
Scan.ahead Parse.cartouche |-- Parse.not_eof >> (fn tok =>
Source (Token.make_src ("cartouche", Position.none) [tok])) ||
Parse.$$$ "(" |-- Parse.!!! (meth0 --| Parse.$$$ ")")) x
and meth4 x =
(meth5 -- Parse.position (Parse.$$$ "?")
>> (fn (m, (_, pos)) => Combinator (combinator_info [pos], Try, [m])) ||
meth5 -- Parse.position (Parse.$$$ "+")
>> (fn (m, (_, pos)) => Combinator (combinator_info [pos], Repeat1, [m])) ||
meth5 -- (Parse.position (Parse.$$$ "[") --
Scan.optional Parse.nat 1 -- Parse.position (Parse.$$$ "]"))
>> (fn (m, (((_, pos1), n), (_, pos2))) =>
Combinator (combinator_info [pos1, pos2], Select_Goals n, [m])) ||
meth5) x
and meth3 x =
(meth_name ::: Parse.args1 is_symid_meth >> Source ||
meth4) x
and meth2 x =
(Parse.enum1_positions "," meth3
>> (fn ([m], _) => m | (ms, ps) => Combinator (combinator_info ps, Then, ms))) x
and meth1 x =
(Parse.enum1_positions ";" meth2
>> (fn ([m], _) => m | (ms, ps) => Combinator (combinator_info ps, Then_All_New, ms))) x
and meth0 x =
(Parse.enum1_positions "|" meth1
>> (fn ([m], _) => m | (ms, ps) => Combinator (combinator_info ps, Orelse, ms))) x;
val meth =
nth [meth0, meth1, meth2, meth3, meth4, meth5] pri
handle General.Subscript => raise Fail ("Bad method parser priority " ^ string_of_int pri);
in Scan.trace meth >> (fn (m, toks) => (m, Token.range_of toks)) end;
val parse = parser 4;
end;
val parse_by =
Parse.$$$ "by" |-- parse -- Scan.option parse
>> (fn (m1, m2) => ((m1, m2), maps reports_of (m1 :: the_list m2)));
(* read method text *)
fun read ctxt src =
(case Scan.read Token.stopper (Parse.!!! (parser 0 --| Scan.ahead Parse.eof)) src of
SOME (text, range) =>
if checked_text text then text
else (report (text, range); check_text ctxt text)
| NONE => error ("Failed to parse method" ^ Position.here (#1 (Token.range_of src))));
fun read_closure ctxt src0 =
let
val src1 = map Token.init_assignable src0;
val text = read ctxt src1 |> map_source (method_closure ctxt);
val src2 = map Token.closure src1;
in (text, src2) end;
fun read_closure_input ctxt =
let val keywords = Keyword.no_major_keywords (Thy_Header.get_keywords' ctxt)
in Parse.read_embedded ctxt keywords (Scan.many Token.not_eof) #> read_closure ctxt end;
val text_closure =
Args.context -- Scan.lift (Parse.token Parse.embedded) >> (fn (ctxt, tok) =>
(case Token.get_value tok of
SOME (Token.Source src) => read ctxt src
| _ =>
let
val (text, src) = read_closure_input ctxt (Token.input_of tok);
val _ = Token.assign (SOME (Token.Source src)) tok;
in text end));
(* theory setup *)
val _ = Theory.setup
(setup \<^binding>\<open>fail\<close> (Scan.succeed (K fail)) "force failure" #>
setup \<^binding>\<open>succeed\<close> (Scan.succeed (K succeed)) "succeed" #>
setup \<^binding>\<open>sleep\<close> (Scan.lift Parse.real >> (fn s => fn _ => fn _ => sleep (seconds s)))
"succeed after delay (in seconds)" #>
setup \<^binding>\<open>-\<close> (Scan.succeed (K (SIMPLE_METHOD all_tac)))
"insert current facts, nothing else" #>
setup \<^binding>\<open>goal_cases\<close> (Scan.lift (Scan.repeat Args.name_token) >> (fn names => fn _ =>
CONTEXT_METHOD (fn _ => fn (ctxt, st) =>
(case drop (Thm.nprems_of st) names of
[] => NONE
| bad =>
if detect_closure_state st then NONE
else
SOME (fn () => ("Excessive case name(s): " ^ commas_quote (map Token.content_of bad) ^
Position.here (#1 (Token.range_of bad)))))
|> (fn SOME msg => Seq.single (Seq.Error msg)
| NONE => goal_cases_tac (map Token.content_of names) (ctxt, st)))))
"bind cases for goals" #>
setup \<^binding>\<open>subproofs\<close> (text_closure >> (Context_Tactic.SUBPROOFS ooo evaluate_runtime))
"apply proof method to subproofs with closed derivation" #>
setup \<^binding>\<open>insert\<close> (Attrib.thms >> (K o insert))
"insert theorems, ignoring facts" #>
setup \<^binding>\<open>intro\<close> (Attrib.thms >> (fn ths => fn ctxt => intro ctxt ths))
"repeatedly apply introduction rules" #>
setup \<^binding>\<open>elim\<close> (Attrib.thms >> (fn ths => fn ctxt => elim ctxt ths))
"repeatedly apply elimination rules" #>
setup \<^binding>\<open>unfold\<close> (Attrib.thms >> unfold_meth) "unfold definitions" #>
setup \<^binding>\<open>fold\<close> (Attrib.thms >> fold_meth) "fold definitions" #>
setup \<^binding>\<open>atomize\<close> (Scan.lift (Args.mode "full") >> atomize)
"present local premises as object-level statements" #>
setup \<^binding>\<open>rule\<close> (Attrib.thms >> (fn ths => fn ctxt => some_rule ctxt ths))
"apply some intro/elim rule" #>
setup \<^binding>\<open>erule\<close> (xrule_meth erule) "apply rule in elimination manner (improper)" #>
setup \<^binding>\<open>drule\<close> (xrule_meth drule) "apply rule in destruct manner (improper)" #>
setup \<^binding>\<open>frule\<close> (xrule_meth frule) "apply rule in forward manner (improper)" #>
setup \<^binding>\<open>this\<close> (Scan.succeed this) "apply current facts as rules" #>
setup \<^binding>\<open>fact\<close> (Attrib.thms >> fact) "composition by facts from context" #>
setup \<^binding>\<open>assumption\<close> (Scan.succeed assumption)
"proof by assumption, preferring facts" #>
setup \<^binding>\<open>rename_tac\<close> (Args.goal_spec -- Scan.lift (Scan.repeat1 Args.name) >>
(fn (quant, xs) => K (SIMPLE_METHOD'' quant (rename_tac xs))))
"rename parameters of goal" #>
setup \<^binding>\<open>rotate_tac\<close> (Args.goal_spec -- Scan.lift (Scan.optional Parse.int 1) >>
(fn (quant, i) => K (SIMPLE_METHOD'' quant (rotate_tac i))))
"rotate assumptions of goal" #>
setup \<^binding>\<open>tactic\<close> (parse_tactic >> (K o METHOD))
"ML tactic as proof method" #>
setup \<^binding>\<open>raw_tactic\<close> (parse_tactic >> (fn tac => fn _ => Context_Tactic.CONTEXT_TACTIC o tac))
"ML tactic as raw proof method" #>
setup \<^binding>\<open>use\<close>
(Attrib.thms -- (Scan.lift (Parse.$$$ "in") |-- text_closure) >>
(fn (thms, text) => fn ctxt => fn _ => evaluate_runtime text ctxt thms))
"indicate method facts and context for method expression");
(*final declarations of this structure!*)
val unfold = unfold_meth;
val fold = fold_meth;
end;
val CONTEXT_METHOD = Method.CONTEXT_METHOD;
val METHOD = Method.METHOD;
val SIMPLE_METHOD = Method.SIMPLE_METHOD;
val SIMPLE_METHOD' = Method.SIMPLE_METHOD';
val SIMPLE_METHOD'' = Method.SIMPLE_METHOD'';