src/HOLCF/Lift.thy
author huffman
Fri, 20 Jun 2008 23:01:09 +0200
changeset 27310 d0229bc6c461
parent 27292 7be079726009
child 27311 aa28b1d33866
permissions -rw-r--r--
simplify profinite class axioms

(*  Title:      HOLCF/Lift.thy
    ID:         $Id$
    Author:     Olaf Mueller
*)

header {* Lifting types of class type to flat pcpo's *}

theory Lift
imports Discrete Up Cprod Countable
begin

defaultsort type

pcpodef 'a lift = "UNIV :: 'a discr u set"
by simp

instance lift :: (finite) finite_po
by (rule typedef_finite_po [OF type_definition_lift])

lemmas inst_lift_pcpo = Abs_lift_strict [symmetric]

definition
  Def :: "'a \<Rightarrow> 'a lift" where
  "Def x = Abs_lift (up\<cdot>(Discr x))"

subsection {* Lift as a datatype *}

lemma lift_induct: "\<lbrakk>P \<bottom>; \<And>x. P (Def x)\<rbrakk> \<Longrightarrow> P y"
apply (induct y)
apply (rule_tac p=y in upE)
apply (simp add: Abs_lift_strict)
apply (case_tac x)
apply (simp add: Def_def)
done

rep_datatype "\<bottom>\<Colon>'a lift" Def
  by (erule lift_induct) (simp_all add: Def_def Abs_lift_inject lift_def inst_lift_pcpo)

lemmas lift_distinct1 = lift.distinct(1)
lemmas lift_distinct2 = lift.distinct(2)
lemmas Def_not_UU = lift.distinct(2)
lemmas Def_inject = lift.inject


text {* @{term UU} and @{term Def} *}

lemma Lift_exhaust: "x = \<bottom> \<or> (\<exists>y. x = Def y)"
  by (induct x) simp_all

lemma Lift_cases: "\<lbrakk>x = \<bottom> \<Longrightarrow> P; \<exists>a. x = Def a \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
  by (insert Lift_exhaust) blast

lemma not_Undef_is_Def: "(x \<noteq> \<bottom>) = (\<exists>y. x = Def y)"
  by (cases x) simp_all

lemma lift_definedE: "\<lbrakk>x \<noteq> \<bottom>; \<And>a. x = Def a \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
  by (cases x) simp_all

text {*
  For @{term "x ~= UU"} in assumptions @{text def_tac} replaces @{text
  x} by @{text "Def a"} in conclusion. *}

ML {*
  local val lift_definedE = thm "lift_definedE"
  in val def_tac = SIMPSET' (fn ss =>
    etac lift_definedE THEN' asm_simp_tac ss)
  end;
*}

lemma DefE: "Def x = \<bottom> \<Longrightarrow> R"
  by simp

lemma DefE2: "\<lbrakk>x = Def s; x = \<bottom>\<rbrakk> \<Longrightarrow> R"
  by simp

lemma Def_inject_less_eq: "Def x \<sqsubseteq> Def y \<longleftrightarrow> x = y"
by (simp add: less_lift_def Def_def Abs_lift_inverse lift_def)

lemma Def_less_is_eq [simp]: "Def x \<sqsubseteq> y \<longleftrightarrow> Def x = y"
by (induct y, simp, simp add: Def_inject_less_eq)


subsection {* Lift is flat *}

instance lift :: (type) flat
proof
  fix x y :: "'a lift"
  assume "x \<sqsubseteq> y" thus "x = \<bottom> \<or> x = y"
    by (induct x) auto
qed

text {*
  \medskip Two specific lemmas for the combination of LCF and HOL
  terms.
*}

lemma cont_Rep_CFun_app [simp]: "\<lbrakk>cont g; cont f\<rbrakk> \<Longrightarrow> cont(\<lambda>x. ((f x)\<cdot>(g x)) s)"
by (rule cont2cont_Rep_CFun [THEN cont2cont_fun])

lemma cont_Rep_CFun_app_app [simp]: "\<lbrakk>cont g; cont f\<rbrakk> \<Longrightarrow> cont(\<lambda>x. ((f x)\<cdot>(g x)) s t)"
by (rule cont_Rep_CFun_app [THEN cont2cont_fun])

subsection {* Further operations *}

definition
  flift1 :: "('a \<Rightarrow> 'b::pcpo) \<Rightarrow> ('a lift \<rightarrow> 'b)"  (binder "FLIFT " 10)  where
  "flift1 = (\<lambda>f. (\<Lambda> x. lift_case \<bottom> f x))"

definition
  flift2 :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a lift \<rightarrow> 'b lift)" where
  "flift2 f = (FLIFT x. Def (f x))"

definition
  liftpair :: "'a lift \<times> 'b lift \<Rightarrow> ('a \<times> 'b) lift" where
  "liftpair x = csplit\<cdot>(FLIFT x y. Def (x, y))\<cdot>x"

subsection {* Continuity Proofs for flift1, flift2 *}

text {* Need the instance of @{text flat}. *}

lemma cont_lift_case1: "cont (\<lambda>f. lift_case a f x)"
apply (induct x)
apply simp
apply simp
apply (rule cont_id [THEN cont2cont_fun])
done

lemma cont_lift_case2: "cont (\<lambda>x. lift_case \<bottom> f x)"
apply (rule flatdom_strict2cont)
apply simp
done

lemma cont_flift1: "cont flift1"
unfolding flift1_def
apply (rule cont2cont_LAM)
apply (rule cont_lift_case2)
apply (rule cont_lift_case1)
done

lemma FLIFT_mono:
  "(\<And>x. f x \<sqsubseteq> g x) \<Longrightarrow> (FLIFT x. f x) \<sqsubseteq> (FLIFT x. g x)"
apply (rule monofunE [where f=flift1])
apply (rule cont2mono [OF cont_flift1])
apply (simp add: less_fun_ext)
done

lemma cont2cont_flift1 [simp]:
  "\<lbrakk>\<And>y. cont (\<lambda>x. f x y)\<rbrakk> \<Longrightarrow> cont (\<lambda>x. FLIFT y. f x y)"
apply (rule cont_flift1 [THEN cont2cont_app3])
apply simp
done

lemma cont2cont_lift_case [simp]:
  "\<lbrakk>\<And>y. cont (\<lambda>x. f x y); cont g\<rbrakk> \<Longrightarrow> cont (\<lambda>x. lift_case UU (f x) (g x))"
apply (subgoal_tac "cont (\<lambda>x. (FLIFT y. f x y)\<cdot>(g x))")
apply (simp add: flift1_def cont_lift_case2)
apply simp
done

text {* rewrites for @{term flift1}, @{term flift2} *}

lemma flift1_Def [simp]: "flift1 f\<cdot>(Def x) = (f x)"
by (simp add: flift1_def cont_lift_case2)

lemma flift2_Def [simp]: "flift2 f\<cdot>(Def x) = Def (f x)"
by (simp add: flift2_def)

lemma flift1_strict [simp]: "flift1 f\<cdot>\<bottom> = \<bottom>"
by (simp add: flift1_def cont_lift_case2)

lemma flift2_strict [simp]: "flift2 f\<cdot>\<bottom> = \<bottom>"
by (simp add: flift2_def)

lemma flift2_defined [simp]: "x \<noteq> \<bottom> \<Longrightarrow> (flift2 f)\<cdot>x \<noteq> \<bottom>"
by (erule lift_definedE, simp)

lemma flift2_defined_iff [simp]: "(flift2 f\<cdot>x = \<bottom>) = (x = \<bottom>)"
by (cases x, simp_all)

text {*
  \medskip Extension of @{text cont_tac} and installation of simplifier.
*}

lemmas cont_lemmas_ext =
  cont2cont_flift1 cont2cont_lift_case cont2cont_lambda
  cont_Rep_CFun_app cont_Rep_CFun_app_app cont_if

ML {*
local
  val cont_lemmas2 = thms "cont_lemmas1" @ thms "cont_lemmas_ext";
  val flift1_def = thm "flift1_def";
in

fun cont_tac  i = resolve_tac cont_lemmas2 i;
fun cont_tacR i = REPEAT (cont_tac i);

fun cont_tacRs ss i =
  simp_tac ss i THEN
  REPEAT (cont_tac i)
end;
*}

subsection {* Lifted countable types are bifinite *}

instantiation lift :: (countable) bifinite
begin

definition
  approx_lift_def:
    "approx = (\<lambda>n. FLIFT x. if to_nat x < n then Def x else \<bottom>)"

instance proof
  fix x :: "'a lift"
  show "chain (approx :: nat \<Rightarrow> 'a lift \<rightarrow> 'a lift)"
    unfolding approx_lift_def
    by (rule chainI, simp add: FLIFT_mono)
next
  fix x :: "'a lift"
  show "(\<Squnion>i. approx i\<cdot>x) = x"
    unfolding approx_lift_def
    apply (cases x, simp)
    apply (rule thelubI)
    apply (rule is_lubI)
     apply (rule ub_rangeI, simp)
    apply (drule ub_rangeD)
    apply (erule rev_trans_less)
    apply simp
    apply (rule lessI)
    done
next
  fix i :: nat and x :: "'a lift"
  show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
    unfolding approx_lift_def
    by (cases x, simp, simp)
next
  fix i :: nat
  show "finite {x::'a lift. approx i\<cdot>x = x}"
  proof (rule finite_subset)
    let ?S = "insert (\<bottom>::'a lift) (Def ` to_nat -` {..<i})"
    show "{x::'a lift. approx i\<cdot>x = x} \<subseteq> ?S"
      unfolding approx_lift_def
      by (rule subsetI, case_tac x, simp, simp split: split_if_asm)
    show "finite ?S"
      by (simp add: finite_vimageI)
  qed
qed

end

end