discontinued RAW session: bootstrap directly from isabelle_process RAW_ML_SYSTEM;
(* Title: Tools/coherent.ML
Author: Stefan Berghofer, TU Muenchen
Author: Marc Bezem, Institutt for Informatikk, Universitetet i Bergen
Prover for coherent logic, see e.g.
Marc Bezem and Thierry Coquand, Automating Coherent Logic, LPAR 2005
for a description of the algorithm.
*)
signature COHERENT_DATA =
sig
val atomize_elimL: thm
val atomize_exL: thm
val atomize_conjL: thm
val atomize_disjL: thm
val operator_names: string list
end;
signature COHERENT =
sig
val trace: bool Config.T
val coherent_tac: Proof.context -> thm list -> int -> tactic
end;
functor Coherent(Data: COHERENT_DATA) : COHERENT =
struct
(** misc tools **)
val (trace, trace_setup) = Attrib.config_bool @{binding coherent_trace} (K false);
fun cond_trace ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ();
datatype cl_prf =
ClPrf of thm * (Type.tyenv * Envir.tenv) * ((indexname * typ) * term) list *
int list * (term list * cl_prf) list;
val is_atomic = not o exists_Const (member (op =) Data.operator_names o #1);
fun rulify_elim_conv ctxt ct =
if is_atomic (Logic.strip_imp_concl (Thm.term_of ct)) then Conv.all_conv ct
else Conv.concl_conv (length (Logic.strip_imp_prems (Thm.term_of ct)))
(Conv.rewr_conv (Thm.symmetric Data.atomize_elimL) then_conv
Raw_Simplifier.rewrite ctxt true (map Thm.symmetric
[Data.atomize_exL, Data.atomize_conjL, Data.atomize_disjL])) ct
fun rulify_elim ctxt th = Simplifier.norm_hhf ctxt (Conv.fconv_rule (rulify_elim_conv ctxt) th);
(* Decompose elimination rule of the form
A1 ==> ... ==> Am ==> (!!xs1. Bs1 ==> P) ==> ... ==> (!!xsn. Bsn ==> P) ==> P
*)
fun dest_elim prop =
let
val prems = Logic.strip_imp_prems prop;
val concl = Logic.strip_imp_concl prop;
val (prems1, prems2) =
take_suffix (fn t => Logic.strip_assums_concl t = concl) prems;
in
(prems1,
if null prems2 then [([], [concl])]
else map (fn t =>
(map snd (Logic.strip_params t), Logic.strip_assums_hyp t)) prems2)
end;
fun mk_rule ctxt th =
let
val th' = rulify_elim ctxt th;
val (prems, cases) = dest_elim (Thm.prop_of th')
in (th', prems, cases) end;
fun mk_dom ts = fold (fn t =>
Typtab.map_default (fastype_of t, []) (fn us => us @ [t])) ts Typtab.empty;
val empty_env = (Vartab.empty, Vartab.empty);
(* Find matcher that makes conjunction valid in given state *)
fun valid_conj _ _ env [] = Seq.single (env, [])
| valid_conj ctxt facts env (t :: ts) =
Seq.maps (fn (u, x) => Seq.map (apsnd (cons x))
(valid_conj ctxt facts
(Pattern.match (Proof_Context.theory_of ctxt) (t, u) env) ts
handle Pattern.MATCH => Seq.empty))
(Seq.of_list (sort (int_ord o apply2 snd) (Net.unify_term facts t)));
(* Instantiate variables that only occur free in conlusion *)
fun inst_extra_vars ctxt dom cs =
let
val vs = fold Term.add_vars (maps snd cs) [];
fun insts [] inst = Seq.single inst
| insts ((ixn, T) :: vs') inst =
Seq.maps (fn t => insts vs' (((ixn, T), t) :: inst))
(Seq.of_list
(case Typtab.lookup dom T of
NONE =>
error ("Unknown domain: " ^
Syntax.string_of_typ ctxt T ^ "\nfor term(s) " ^
commas (maps (map (Syntax.string_of_term ctxt) o snd) cs))
| SOME ts => ts))
in
Seq.map (fn inst =>
(inst, map (apsnd (map (subst_Vars (map (apfst fst) inst)))) cs))
(insts vs [])
end;
(* Check whether disjunction is valid in given state *)
fun is_valid_disj _ _ [] = false
| is_valid_disj ctxt facts ((Ts, ts) :: ds) =
let val vs = map_index (fn (i, T) => Var (("x", i), T)) Ts in
(case Seq.pull (valid_conj ctxt facts empty_env
(map (fn t => subst_bounds (rev vs, t)) ts)) of
SOME _ => true
| NONE => is_valid_disj ctxt facts ds)
end;
fun string_of_facts ctxt s facts =
Pretty.string_of (Pretty.big_list s
(map (Syntax.pretty_term ctxt) (map fst (sort (int_ord o apply2 snd) (Net.content facts)))));
fun valid ctxt rules goal dom facts nfacts nparams =
let
val seq =
Seq.of_list rules |> Seq.maps (fn (th, ps, cs) =>
valid_conj ctxt facts empty_env ps |> Seq.maps (fn (env as (tye, _), is) =>
let val cs' = map (fn (Ts, ts) =>
(map (Envir.subst_type tye) Ts, map (Envir.subst_term env) ts)) cs
in
inst_extra_vars ctxt dom cs' |>
Seq.map_filter (fn (inst, cs'') =>
if is_valid_disj ctxt facts cs'' then NONE
else SOME (th, env, inst, is, cs''))
end));
in
(case Seq.pull seq of
NONE =>
(if Context_Position.is_visible ctxt then
warning (string_of_facts ctxt "Countermodel found:" facts)
else (); NONE)
| SOME ((th, env, inst, is, cs), _) =>
if cs = [([], [goal])] then SOME (ClPrf (th, env, inst, is, []))
else
(case valid_cases ctxt rules goal dom facts nfacts nparams cs of
NONE => NONE
| SOME prfs => SOME (ClPrf (th, env, inst, is, prfs))))
end
and valid_cases _ _ _ _ _ _ _ [] = SOME []
| valid_cases ctxt rules goal dom facts nfacts nparams ((Ts, ts) :: ds) =
let
val _ =
cond_trace ctxt (fn () =>
Pretty.string_of (Pretty.block
(Pretty.str "case" :: Pretty.brk 1 ::
Pretty.commas (map (Syntax.pretty_term ctxt) ts))));
val ps = map_index (fn (i, T) => ("par" ^ string_of_int (nparams + i), T)) Ts;
val (params, ctxt') = fold_map Variable.next_bound ps ctxt;
val ts' = map_index (fn (i, t) => (subst_bounds (rev params, t), nfacts + i)) ts;
val dom' =
fold (fn (T, p) => Typtab.map_default (T, []) (fn ps => ps @ [p])) (Ts ~~ params) dom;
val facts' = fold (fn (t, i) => Net.insert_term op = (t, (t, i))) ts' facts;
in
(case valid ctxt' rules goal dom' facts' (nfacts + length ts) (nparams + length Ts) of
NONE => NONE
| SOME prf =>
(case valid_cases ctxt rules goal dom facts nfacts nparams ds of
NONE => NONE
| SOME prfs => SOME ((params, prf) :: prfs)))
end;
(** proof replaying **)
fun thm_of_cl_prf ctxt goal asms (ClPrf (th, (tye, env), insts, is, prfs)) =
let
val _ =
cond_trace ctxt (fn () =>
Pretty.string_of (Pretty.big_list "asms:" (map (Thm.pretty_thm ctxt) asms)));
val th' =
Drule.implies_elim_list
(Thm.instantiate
(map (fn (ixn, (S, T)) => ((ixn, S), Thm.ctyp_of ctxt T)) (Vartab.dest tye),
map (fn (ixn, (T, t)) =>
((ixn, Envir.subst_type tye T), Thm.cterm_of ctxt t)) (Vartab.dest env) @
map (fn (ixnT, t) => (ixnT, Thm.cterm_of ctxt t)) insts) th)
(map (nth asms) is);
val (_, cases) = dest_elim (Thm.prop_of th');
in
(case (cases, prfs) of
([([], [_])], []) => th'
| ([([], [_])], [([], prf)]) => thm_of_cl_prf ctxt goal (asms @ [th']) prf
| _ =>
Drule.implies_elim_list
(Thm.instantiate (Thm.match
(Drule.strip_imp_concl (Thm.cprop_of th'), goal)) th')
(map (thm_of_case_prf ctxt goal asms) (prfs ~~ cases)))
end
and thm_of_case_prf ctxt goal asms ((params, prf), (_, asms')) =
let
val cparams = map (Thm.cterm_of ctxt) params;
val asms'' = map (Thm.cterm_of ctxt o curry subst_bounds (rev params)) asms';
val (prems'', ctxt') = fold_map Thm.assume_hyps asms'' ctxt;
in
Drule.forall_intr_list cparams
(Drule.implies_intr_list asms'' (thm_of_cl_prf ctxt' goal (asms @ prems'') prf))
end;
(** external interface **)
fun coherent_tac ctxt rules = SUBPROOF (fn {prems, concl, params, context = ctxt', ...} =>
resolve_tac ctxt' [rulify_elim_conv ctxt' concl RS Drule.equal_elim_rule2] 1 THEN
SUBPROOF (fn {prems = prems', concl, context = ctxt'', ...} =>
let
val xs =
map (Thm.term_of o #2) params @
map (fn (_, s) => Free (s, the (Variable.default_type ctxt'' s)))
(rev (Variable.dest_fixes ctxt'')) (* FIXME !? *)
in
(case
valid ctxt'' (map (mk_rule ctxt'') (prems' @ prems @ rules)) (Thm.term_of concl)
(mk_dom xs) Net.empty 0 0 of
NONE => no_tac
| SOME prf => resolve_tac ctxt'' [thm_of_cl_prf ctxt'' concl [] prf] 1)
end) ctxt' 1) ctxt;
val _ = Theory.setup
(trace_setup #>
Method.setup @{binding coherent}
(Attrib.thms >> (fn rules => fn ctxt =>
METHOD (fn facts => HEADGOAL (coherent_tac ctxt (facts @ rules)))))
"prove coherent formula");
end;