Added new SPARK verification environment.
(* Title: HOL/SPARK/SPARK.thy
Author: Stefan Berghofer
Copyright: secunet Security Networks AG
Declaration of proof functions for SPARK/Ada verification environment.
*)
theory SPARK
imports SPARK_Setup
begin
text {* Bitwise logical operators *}
spark_proof_functions
bit__and (integer, integer) : integer = "op AND"
bit__or (integer, integer) : integer = "op OR"
bit__xor (integer, integer) : integer = "op XOR"
lemma AND_lower [simp]:
fixes x :: int and y :: int
assumes "0 \<le> x"
shows "0 \<le> x AND y"
using assms
proof (induct x arbitrary: y rule: bin_induct)
case (3 bin bit)
show ?case
proof (cases y rule: bin_exhaust)
case (1 bin' bit')
from 3 have "0 \<le> bin"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
then have "0 \<le> bin AND bin'" by (rule 3)
with 1 show ?thesis
by simp (simp add: Bit_def bitval_def split add: bit.split)
qed
next
case 2
then show ?case by (simp only: Min_def)
qed simp
lemma OR_lower [simp]:
fixes x :: int and y :: int
assumes "0 \<le> x" "0 \<le> y"
shows "0 \<le> x OR y"
using assms
proof (induct x arbitrary: y rule: bin_induct)
case (3 bin bit)
show ?case
proof (cases y rule: bin_exhaust)
case (1 bin' bit')
from 3 have "0 \<le> bin"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
moreover from 1 3 have "0 \<le> bin'"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
ultimately have "0 \<le> bin OR bin'" by (rule 3)
with 1 show ?thesis
by simp (simp add: Bit_def bitval_def split add: bit.split)
qed
qed simp_all
lemma XOR_lower [simp]:
fixes x :: int and y :: int
assumes "0 \<le> x" "0 \<le> y"
shows "0 \<le> x XOR y"
using assms
proof (induct x arbitrary: y rule: bin_induct)
case (3 bin bit)
show ?case
proof (cases y rule: bin_exhaust)
case (1 bin' bit')
from 3 have "0 \<le> bin"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
moreover from 1 3 have "0 \<le> bin'"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
ultimately have "0 \<le> bin XOR bin'" by (rule 3)
with 1 show ?thesis
by simp (simp add: Bit_def bitval_def split add: bit.split)
qed
next
case 2
then show ?case by (simp only: Min_def)
qed simp
lemma AND_upper1 [simp]:
fixes x :: int and y :: int
assumes "0 \<le> x"
shows "x AND y \<le> x"
using assms
proof (induct x arbitrary: y rule: bin_induct)
case (3 bin bit)
show ?case
proof (cases y rule: bin_exhaust)
case (1 bin' bit')
from 3 have "0 \<le> bin"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
then have "bin AND bin' \<le> bin" by (rule 3)
with 1 show ?thesis
by simp (simp add: Bit_def bitval_def split add: bit.split)
qed
next
case 2
then show ?case by (simp only: Min_def)
qed simp
lemmas AND_upper1' [simp] = order_trans [OF AND_upper1]
lemmas AND_upper1'' [simp] = order_le_less_trans [OF AND_upper1]
lemma AND_upper2 [simp]:
fixes x :: int and y :: int
assumes "0 \<le> y"
shows "x AND y \<le> y"
using assms
proof (induct y arbitrary: x rule: bin_induct)
case (3 bin bit)
show ?case
proof (cases x rule: bin_exhaust)
case (1 bin' bit')
from 3 have "0 \<le> bin"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
then have "bin' AND bin \<le> bin" by (rule 3)
with 1 show ?thesis
by simp (simp add: Bit_def bitval_def split add: bit.split)
qed
next
case 2
then show ?case by (simp only: Min_def)
qed simp
lemmas AND_upper2' [simp] = order_trans [OF AND_upper2]
lemmas AND_upper2'' [simp] = order_le_less_trans [OF AND_upper2]
lemma OR_upper:
fixes x :: int and y :: int
assumes "0 \<le> x" "x < 2 ^ n" "y < 2 ^ n"
shows "x OR y < 2 ^ n"
using assms
proof (induct x arbitrary: y n rule: bin_induct)
case (3 bin bit)
show ?case
proof (cases y rule: bin_exhaust)
case (1 bin' bit')
show ?thesis
proof (cases n)
case 0
with 3 have "bin BIT bit = 0" by simp
then have "bin = 0" "bit = 0"
by (auto simp add: Bit_def bitval_def split add: bit.split_asm) arith
then show ?thesis using 0 1 `y < 2 ^ n`
by simp (simp add: Bit0_def int_or_Pls [unfolded Pls_def])
next
case (Suc m)
from 3 have "0 \<le> bin"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
moreover from 3 Suc have "bin < 2 ^ m"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
moreover from 1 3 Suc have "bin' < 2 ^ m"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
ultimately have "bin OR bin' < 2 ^ m" by (rule 3)
with 1 Suc show ?thesis
by simp (simp add: Bit_def bitval_def split add: bit.split)
qed
qed
qed simp_all
lemmas [simp] =
OR_upper [of _ 8, simplified zle_diff1_eq [symmetric], simplified]
OR_upper [of _ 8, simplified]
OR_upper [of _ 16, simplified zle_diff1_eq [symmetric], simplified]
OR_upper [of _ 16, simplified]
OR_upper [of _ 32, simplified zle_diff1_eq [symmetric], simplified]
OR_upper [of _ 32, simplified]
OR_upper [of _ 64, simplified zle_diff1_eq [symmetric], simplified]
OR_upper [of _ 64, simplified]
lemma XOR_upper:
fixes x :: int and y :: int
assumes "0 \<le> x" "x < 2 ^ n" "y < 2 ^ n"
shows "x XOR y < 2 ^ n"
using assms
proof (induct x arbitrary: y n rule: bin_induct)
case (3 bin bit)
show ?case
proof (cases y rule: bin_exhaust)
case (1 bin' bit')
show ?thesis
proof (cases n)
case 0
with 3 have "bin BIT bit = 0" by simp
then have "bin = 0" "bit = 0"
by (auto simp add: Bit_def bitval_def split add: bit.split_asm) arith
then show ?thesis using 0 1 `y < 2 ^ n`
by simp (simp add: Bit0_def int_xor_Pls [unfolded Pls_def])
next
case (Suc m)
from 3 have "0 \<le> bin"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
moreover from 3 Suc have "bin < 2 ^ m"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
moreover from 1 3 Suc have "bin' < 2 ^ m"
by (simp add: Bit_def bitval_def split add: bit.split_asm)
ultimately have "bin XOR bin' < 2 ^ m" by (rule 3)
with 1 Suc show ?thesis
by simp (simp add: Bit_def bitval_def split add: bit.split)
qed
qed
next
case 2
then show ?case by (simp only: Min_def)
qed simp
lemmas [simp] =
XOR_upper [of _ 8, simplified zle_diff1_eq [symmetric], simplified]
XOR_upper [of _ 8, simplified]
XOR_upper [of _ 16, simplified zle_diff1_eq [symmetric], simplified]
XOR_upper [of _ 16, simplified]
XOR_upper [of _ 32, simplified zle_diff1_eq [symmetric], simplified]
XOR_upper [of _ 32, simplified]
XOR_upper [of _ 64, simplified zle_diff1_eq [symmetric], simplified]
XOR_upper [of _ 64, simplified]
lemma bit_not_spark_eq:
"NOT (word_of_int x :: ('a::len0) word) =
word_of_int (2 ^ len_of TYPE('a) - 1 - x)"
proof -
have "word_of_int x + NOT (word_of_int x) =
word_of_int x + (word_of_int (2 ^ len_of TYPE('a) - 1 - x)::'a word)"
by (simp only: bwsimps bin_add_not Min_def)
(simp add: word_of_int_hom_syms word_of_int_2p_len)
then show ?thesis by (rule add_left_imp_eq)
qed
lemmas [simp] =
bit_not_spark_eq [where 'a=8, simplified]
bit_not_spark_eq [where 'a=16, simplified]
bit_not_spark_eq [where 'a=32, simplified]
bit_not_spark_eq [where 'a=64, simplified]
lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT 1"
unfolding Bit_B1
by (induct n) simp_all
lemma mod_BIT:
"bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit"
proof -
have "bin mod 2 ^ n < 2 ^ n" by simp
then have "bin mod 2 ^ n \<le> 2 ^ n - 1" by simp
then have "2 * (bin mod 2 ^ n) \<le> 2 * (2 ^ n - 1)"
by (rule mult_left_mono) simp
then have "2 * (bin mod 2 ^ n) + 1 < 2 * 2 ^ n" by simp
then show ?thesis
by (auto simp add: Bit_def bitval_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"]
mod_pos_pos_trivial split add: bit.split)
qed
lemma AND_mod:
fixes x :: int
shows "x AND 2 ^ n - 1 = x mod 2 ^ n"
proof (induct x arbitrary: n rule: bin_induct)
case 1
then show ?case
by simp (simp add: Pls_def)
next
case 2
then show ?case
by (simp, simp only: Min_def, simp add: m1mod2k)
next
case (3 bin bit)
show ?case
proof (cases n)
case 0
then show ?thesis by (simp add: int_and_extra_simps [unfolded Pls_def])
next
case (Suc m)
with 3 show ?thesis
by (simp only: power_BIT mod_BIT int_and_Bits) simp
qed
qed
end