(* Title: HOL/Lattices.thy
Author: Tobias Nipkow
*)
header {* Abstract lattices *}
theory Lattices
imports Orderings
begin
subsection {* Lattices *}
notation
less_eq (infix "\<sqsubseteq>" 50) and
less (infix "\<sqsubset>" 50)
class lower_semilattice = order +
fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70)
assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x"
and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y"
and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z"
class upper_semilattice = order +
fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)
assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y"
and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y"
and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x"
begin
text {* Dual lattice *}
lemma dual_semilattice:
"lower_semilattice (op \<ge>) (op >) sup"
by (rule lower_semilattice.intro, rule dual_order)
(unfold_locales, simp_all add: sup_least)
end
class lattice = lower_semilattice + upper_semilattice
subsubsection {* Intro and elim rules*}
context lower_semilattice
begin
lemma le_infI1:
"a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x"
by (rule order_trans) auto
lemma le_infI2:
"b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x"
by (rule order_trans) auto
lemma le_infI: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b"
by (blast intro: inf_greatest)
lemma le_infE: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P"
by (blast intro: order_trans le_infI1 le_infI2)
lemma le_inf_iff [simp]:
"x \<sqsubseteq> y \<sqinter> z \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<sqsubseteq> z"
by (blast intro: le_infI elim: le_infE)
lemma le_iff_inf:
"x \<sqsubseteq> y \<longleftrightarrow> x \<sqinter> y = x"
by (auto intro: le_infI1 antisym dest: eq_iff [THEN iffD1])
lemma mono_inf:
fixes f :: "'a \<Rightarrow> 'b\<Colon>lower_semilattice"
shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<le> f A \<sqinter> f B"
by (auto simp add: mono_def intro: Lattices.inf_greatest)
end
context upper_semilattice
begin
lemma le_supI1:
"x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"
by (rule order_trans) auto
lemma le_supI2:
"x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"
by (rule order_trans) auto
lemma le_supI:
"a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x"
by (blast intro: sup_least)
lemma le_supE:
"a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P"
by (blast intro: le_supI1 le_supI2 order_trans)
lemma le_sup_iff [simp]:
"x \<squnion> y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<and> y \<sqsubseteq> z"
by (blast intro: le_supI elim: le_supE)
lemma le_iff_sup:
"x \<sqsubseteq> y \<longleftrightarrow> x \<squnion> y = y"
by (auto intro: le_supI2 antisym dest: eq_iff [THEN iffD1])
lemma mono_sup:
fixes f :: "'a \<Rightarrow> 'b\<Colon>upper_semilattice"
shows "mono f \<Longrightarrow> f A \<squnion> f B \<le> f (A \<squnion> B)"
by (auto simp add: mono_def intro: Lattices.sup_least)
end
subsubsection {* Equational laws *}
context lower_semilattice
begin
lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)"
by (rule antisym) auto
lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
by (rule antisym) (auto intro: le_infI1 le_infI2)
lemma inf_idem[simp]: "x \<sqinter> x = x"
by (rule antisym) auto
lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"
by (rule antisym) (auto intro: le_infI2)
lemma inf_absorb1[simp]: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"
by (rule antisym) auto
lemma inf_absorb2[simp]: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y"
by (rule antisym) auto
lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)"
by (rule mk_left_commute [of inf]) (fact inf_assoc inf_commute)+
lemmas inf_aci = inf_commute inf_assoc inf_left_commute inf_left_idem
end
context upper_semilattice
begin
lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)"
by (rule antisym) auto
lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
by (rule antisym) (auto intro: le_supI1 le_supI2)
lemma sup_idem[simp]: "x \<squnion> x = x"
by (rule antisym) auto
lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"
by (rule antisym) (auto intro: le_supI2)
lemma sup_absorb1[simp]: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x"
by (rule antisym) auto
lemma sup_absorb2[simp]: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"
by (rule antisym) auto
lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)"
by (rule mk_left_commute [of sup]) (fact sup_assoc sup_commute)+
lemmas sup_aci = sup_commute sup_assoc sup_left_commute sup_left_idem
end
context lattice
begin
lemma dual_lattice:
"lattice (op \<ge>) (op >) sup inf"
by (rule lattice.intro, rule dual_semilattice, rule upper_semilattice.intro, rule dual_order)
(unfold_locales, auto)
lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x"
by (blast intro: antisym inf_le1 inf_greatest sup_ge1)
lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x"
by (blast intro: antisym sup_ge1 sup_least inf_le1)
lemmas inf_sup_aci = inf_aci sup_aci
lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2
text{* Towards distributivity *}
lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)"
by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2)
lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)"
by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2)
text{* If you have one of them, you have them all. *}
lemma distrib_imp1:
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
proof-
have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb)
also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc del:sup_absorb1)
also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)"
by(simp add:inf_sup_absorb inf_commute)
also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D)
finally show ?thesis .
qed
lemma distrib_imp2:
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
proof-
have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb)
also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc del:inf_absorb1)
also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)"
by(simp add:sup_inf_absorb sup_commute)
also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D)
finally show ?thesis .
qed
end
subsection {* Distributive lattices *}
class distrib_lattice = lattice +
assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
context distrib_lattice
begin
lemma sup_inf_distrib2:
"(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"
by(simp add: inf_sup_aci sup_inf_distrib1)
lemma inf_sup_distrib1:
"x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
by(rule distrib_imp2[OF sup_inf_distrib1])
lemma inf_sup_distrib2:
"(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)"
by(simp add: inf_sup_aci inf_sup_distrib1)
lemma dual_distrib_lattice:
"distrib_lattice (op \<ge>) (op >) sup inf"
by (rule distrib_lattice.intro, rule dual_lattice)
(unfold_locales, fact inf_sup_distrib1)
lemmas distrib =
sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2
end
subsection {* Boolean algebras *}
class boolean_algebra = distrib_lattice + top + bot + minus + uminus +
assumes inf_compl_bot: "x \<sqinter> - x = bot"
and sup_compl_top: "x \<squnion> - x = top"
assumes diff_eq: "x - y = x \<sqinter> - y"
begin
lemma dual_boolean_algebra:
"boolean_algebra (\<lambda>x y. x \<squnion> - y) uminus (op \<ge>) (op >) (op \<squnion>) (op \<sqinter>) top bot"
by (rule boolean_algebra.intro, rule dual_distrib_lattice)
(unfold_locales,
auto simp add: inf_compl_bot sup_compl_top diff_eq less_le_not_le)
lemma compl_inf_bot:
"- x \<sqinter> x = bot"
by (simp add: inf_commute inf_compl_bot)
lemma compl_sup_top:
"- x \<squnion> x = top"
by (simp add: sup_commute sup_compl_top)
lemma inf_bot_left [simp]:
"bot \<sqinter> x = bot"
by (rule inf_absorb1) simp
lemma inf_bot_right [simp]:
"x \<sqinter> bot = bot"
by (rule inf_absorb2) simp
lemma sup_top_left [simp]:
"top \<squnion> x = top"
by (rule sup_absorb1) simp
lemma sup_top_right [simp]:
"x \<squnion> top = top"
by (rule sup_absorb2) simp
lemma inf_top_left [simp]:
"top \<sqinter> x = x"
by (rule inf_absorb2) simp
lemma inf_top_right [simp]:
"x \<sqinter> top = x"
by (rule inf_absorb1) simp
lemma sup_bot_left [simp]:
"bot \<squnion> x = x"
by (rule sup_absorb2) simp
lemma sup_bot_right [simp]:
"x \<squnion> bot = x"
by (rule sup_absorb1) simp
lemma compl_unique:
assumes "x \<sqinter> y = bot"
and "x \<squnion> y = top"
shows "- x = y"
proof -
have "(x \<sqinter> - x) \<squnion> (- x \<sqinter> y) = (x \<sqinter> y) \<squnion> (- x \<sqinter> y)"
using inf_compl_bot assms(1) by simp
then have "(- x \<sqinter> x) \<squnion> (- x \<sqinter> y) = (y \<sqinter> x) \<squnion> (y \<sqinter> - x)"
by (simp add: inf_commute)
then have "- x \<sqinter> (x \<squnion> y) = y \<sqinter> (x \<squnion> - x)"
by (simp add: inf_sup_distrib1)
then have "- x \<sqinter> top = y \<sqinter> top"
using sup_compl_top assms(2) by simp
then show "- x = y" by (simp add: inf_top_right)
qed
lemma double_compl [simp]:
"- (- x) = x"
using compl_inf_bot compl_sup_top by (rule compl_unique)
lemma compl_eq_compl_iff [simp]:
"- x = - y \<longleftrightarrow> x = y"
proof
assume "- x = - y"
then have "- x \<sqinter> y = bot"
and "- x \<squnion> y = top"
by (simp_all add: compl_inf_bot compl_sup_top)
then have "- (- x) = y" by (rule compl_unique)
then show "x = y" by simp
next
assume "x = y"
then show "- x = - y" by simp
qed
lemma compl_bot_eq [simp]:
"- bot = top"
proof -
from sup_compl_top have "bot \<squnion> - bot = top" .
then show ?thesis by simp
qed
lemma compl_top_eq [simp]:
"- top = bot"
proof -
from inf_compl_bot have "top \<sqinter> - top = bot" .
then show ?thesis by simp
qed
lemma compl_inf [simp]:
"- (x \<sqinter> y) = - x \<squnion> - y"
proof (rule compl_unique)
have "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = ((x \<sqinter> y) \<sqinter> - x) \<squnion> ((x \<sqinter> y) \<sqinter> - y)"
by (rule inf_sup_distrib1)
also have "... = (y \<sqinter> (x \<sqinter> - x)) \<squnion> (x \<sqinter> (y \<sqinter> - y))"
by (simp only: inf_commute inf_assoc inf_left_commute)
finally show "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = bot"
by (simp add: inf_compl_bot)
next
have "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = (x \<squnion> (- x \<squnion> - y)) \<sqinter> (y \<squnion> (- x \<squnion> - y))"
by (rule sup_inf_distrib2)
also have "... = (- y \<squnion> (x \<squnion> - x)) \<sqinter> (- x \<squnion> (y \<squnion> - y))"
by (simp only: sup_commute sup_assoc sup_left_commute)
finally show "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = top"
by (simp add: sup_compl_top)
qed
lemma compl_sup [simp]:
"- (x \<squnion> y) = - x \<sqinter> - y"
proof -
interpret boolean_algebra "\<lambda>x y. x \<squnion> - y" uminus "op \<ge>" "op >" "op \<squnion>" "op \<sqinter>" top bot
by (rule dual_boolean_algebra)
then show ?thesis by simp
qed
end
subsection {* Uniqueness of inf and sup *}
lemma (in lower_semilattice) inf_unique:
fixes f (infixl "\<triangle>" 70)
assumes le1: "\<And>x y. x \<triangle> y \<le> x" and le2: "\<And>x y. x \<triangle> y \<le> y"
and greatest: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z"
shows "x \<sqinter> y = x \<triangle> y"
proof (rule antisym)
show "x \<triangle> y \<le> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2)
next
have leI: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z" by (blast intro: greatest)
show "x \<sqinter> y \<le> x \<triangle> y" by (rule leI) simp_all
qed
lemma (in upper_semilattice) sup_unique:
fixes f (infixl "\<nabla>" 70)
assumes ge1 [simp]: "\<And>x y. x \<le> x \<nabla> y" and ge2: "\<And>x y. y \<le> x \<nabla> y"
and least: "\<And>x y z. y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<nabla> z \<le> x"
shows "x \<squnion> y = x \<nabla> y"
proof (rule antisym)
show "x \<squnion> y \<le> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2)
next
have leI: "\<And>x y z. x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x \<nabla> y \<le> z" by (blast intro: least)
show "x \<nabla> y \<le> x \<squnion> y" by (rule leI) simp_all
qed
subsection {* @{const min}/@{const max} on linear orders as
special case of @{const inf}/@{const sup} *}
sublocale linorder < min_max!: distrib_lattice less_eq less min max
proof
fix x y z
show "max x (min y z) = min (max x y) (max x z)"
by (auto simp add: min_def max_def)
qed (auto simp add: min_def max_def not_le less_imp_le)
lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{lower_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
by (rule ext)+ (auto intro: antisym)
lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{upper_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
by (rule ext)+ (auto intro: antisym)
lemmas le_maxI1 = min_max.sup_ge1
lemmas le_maxI2 = min_max.sup_ge2
lemmas max_ac = min_max.sup_assoc min_max.sup_commute
mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute]
lemmas min_ac = min_max.inf_assoc min_max.inf_commute
mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute]
subsection {* Bool as lattice *}
instantiation bool :: boolean_algebra
begin
definition
bool_Compl_def: "uminus = Not"
definition
bool_diff_def: "A - B \<longleftrightarrow> A \<and> \<not> B"
definition
inf_bool_eq: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q"
definition
sup_bool_eq: "P \<squnion> Q \<longleftrightarrow> P \<or> Q"
instance proof
qed (simp_all add: inf_bool_eq sup_bool_eq le_bool_def
bot_bool_eq top_bool_eq bool_Compl_def bool_diff_def, auto)
end
subsection {* Fun as lattice *}
instantiation "fun" :: (type, lattice) lattice
begin
definition
inf_fun_eq [code del]: "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)"
definition
sup_fun_eq [code del]: "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)"
instance
apply intro_classes
unfolding inf_fun_eq sup_fun_eq
apply (auto intro: le_funI)
apply (rule le_funI)
apply (auto dest: le_funD)
apply (rule le_funI)
apply (auto dest: le_funD)
done
end
instance "fun" :: (type, distrib_lattice) distrib_lattice
proof
qed (auto simp add: inf_fun_eq sup_fun_eq sup_inf_distrib1)
instantiation "fun" :: (type, uminus) uminus
begin
definition
fun_Compl_def: "- A = (\<lambda>x. - A x)"
instance ..
end
instantiation "fun" :: (type, minus) minus
begin
definition
fun_diff_def: "A - B = (\<lambda>x. A x - B x)"
instance ..
end
instance "fun" :: (type, boolean_algebra) boolean_algebra
proof
qed (simp_all add: inf_fun_eq sup_fun_eq bot_fun_eq top_fun_eq fun_Compl_def fun_diff_def
inf_compl_bot sup_compl_top diff_eq)
no_notation
less_eq (infix "\<sqsubseteq>" 50) and
less (infix "\<sqsubset>" 50) and
inf (infixl "\<sqinter>" 70) and
sup (infixl "\<squnion>" 65)
end