src/HOLCF/Tools/Domain/domain_constructors.ML
author huffman
Mon, 01 Mar 2010 10:00:14 -0800
changeset 35487 d1630f317ed0
parent 35486 c91854705b1d
child 35488 eb0fd03d34f9
permissions -rw-r--r--
qualify constructor names with type name

(*  Title:      HOLCF/Tools/domain/domain_constructors.ML
    Author:     Brian Huffman

Defines constructor functions for a given domain isomorphism
and proves related theorems.
*)

signature DOMAIN_CONSTRUCTORS =
sig
  val add_domain_constructors :
      string
      -> (binding * (bool * binding option * typ) list * mixfix) list
      -> Domain_Isomorphism.iso_info
      -> theory
      -> { con_consts : term list,
           con_betas : thm list,
           exhaust : thm,
           casedist : thm,
           con_compacts : thm list,
           con_rews : thm list,
           inverts : thm list,
           injects : thm list,
           dist_les : thm list,
           dist_eqs : thm list,
           cases : thm list,
           sel_rews : thm list,
           dis_rews : thm list,
           match_rews : thm list,
           pat_rews : thm list
         } * theory;
end;


structure Domain_Constructors :> DOMAIN_CONSTRUCTORS =
struct

open HOLCF_Library;
infixr 6 ->>;
infix -->>;

(************************** miscellaneous functions ***************************)

val simple_ss =
  HOL_basic_ss addsimps simp_thms;

val beta_ss =
  HOL_basic_ss
    addsimps simp_thms
    addsimps [@{thm beta_cfun}]
    addsimprocs [@{simproc cont_proc}];

fun define_consts
    (specs : (binding * term * mixfix) list)
    (thy : theory)
    : (term list * thm list) * theory =
  let
    fun mk_decl (b, t, mx) = (b, fastype_of t, mx);
    val decls = map mk_decl specs;
    val thy = Cont_Consts.add_consts decls thy;
    fun mk_const (b, T, mx) = Const (Sign.full_name thy b, T);
    val consts = map mk_const decls;
    fun mk_def c (b, t, mx) =
      (Binding.suffix_name "_def" b, Logic.mk_equals (c, t));
    val defs = map2 mk_def consts specs;
    val (def_thms, thy) =
      PureThy.add_defs false (map Thm.no_attributes defs) thy;
  in
    ((consts, def_thms), thy)
  end;

fun prove
    (thy : theory)
    (defs : thm list)
    (goal : term)
    (tacs : {prems: thm list, context: Proof.context} -> tactic list)
    : thm =
  let
    fun tac {prems, context} =
      rewrite_goals_tac defs THEN
      EVERY (tacs {prems = map (rewrite_rule defs) prems, context = context})
  in
    Goal.prove_global thy [] [] goal tac
  end;

fun get_vars_avoiding
    (taken : string list)
    (args : (bool * typ) list)
    : (term list * term list) =
  let
    val Ts = map snd args;
    val ns = Name.variant_list taken (Datatype_Prop.make_tnames Ts);
    val vs = map Free (ns ~~ Ts);
    val nonlazy = map snd (filter_out (fst o fst) (args ~~ vs));
  in
    (vs, nonlazy)
  end;

fun get_vars args = get_vars_avoiding [] args;

(************** generating beta reduction rules from definitions **************)

local
  fun arglist (Const _ $ Abs (s, T, t)) =
      let
        val arg = Free (s, T);
        val (args, body) = arglist (subst_bound (arg, t));
      in (arg :: args, body) end
    | arglist t = ([], t);
in
  fun beta_of_def thy def_thm =
      let
        val (con, lam) = Logic.dest_equals (concl_of def_thm);
        val (args, rhs) = arglist lam;
        val lhs = list_ccomb (con, args);
        val goal = mk_equals (lhs, rhs);
        val cs = ContProc.cont_thms lam;
        val betas = map (fn c => mk_meta_eq (c RS @{thm beta_cfun})) cs;
      in
        prove thy (def_thm::betas) goal (K [rtac reflexive_thm 1])
      end;
end;

(******************************************************************************)
(************* definitions and theorems for constructor functions *************)
(******************************************************************************)

fun add_constructors
    (spec : (binding * (bool * typ) list * mixfix) list)
    (abs_const : term)
    (iso_locale : thm)
    (thy : theory)
    =
  let

    (* get theorems about rep and abs *)
    val abs_strict = iso_locale RS @{thm iso.abs_strict};

    (* get types of type isomorphism *)
    val (rhsT, lhsT) = dest_cfunT (fastype_of abs_const);

    fun vars_of args =
      let
        val Ts = map snd args;
        val ns = Datatype_Prop.make_tnames Ts;
      in
        map Free (ns ~~ Ts)
      end;

    (* define constructor functions *)
    val ((con_consts, con_defs), thy) =
      let
        fun one_arg (lazy, T) var = if lazy then mk_up var else var;
        fun one_con (_,args,_) = mk_stuple (map2 one_arg args (vars_of args));
        fun mk_abs t = abs_const ` t;
        val rhss = map mk_abs (mk_sinjects (map one_con spec));
        fun mk_def (bind, args, mx) rhs =
          (bind, big_lambdas (vars_of args) rhs, mx);
      in
        define_consts (map2 mk_def spec rhss) thy
      end;

    (* prove beta reduction rules for constructors *)
    val con_betas = map (beta_of_def thy) con_defs;

    (* replace bindings with terms in constructor spec *)
    val spec' : (term * (bool * typ) list) list =
      let fun one_con con (b, args, mx) = (con, args);
      in map2 one_con con_consts spec end;

    (* prove exhaustiveness of constructors *)
    local
      fun arg2typ n (true,  T) = (n+1, mk_upT (TVar (("'a", n), @{sort cpo})))
        | arg2typ n (false, T) = (n+1, TVar (("'a", n), @{sort pcpo}));
      fun args2typ n [] = (n, oneT)
        | args2typ n [arg] = arg2typ n arg
        | args2typ n (arg::args) =
          let
            val (n1, t1) = arg2typ n arg;
            val (n2, t2) = args2typ n1 args
          in (n2, mk_sprodT (t1, t2)) end;
      fun cons2typ n [] = (n, oneT)
        | cons2typ n [con] = args2typ n (snd con)
        | cons2typ n (con::cons) =
          let
            val (n1, t1) = args2typ n (snd con);
            val (n2, t2) = cons2typ n1 cons
          in (n2, mk_ssumT (t1, t2)) end;
      val ct = ctyp_of thy (snd (cons2typ 1 spec'));
      val thm1 = instantiate' [SOME ct] [] @{thm exh_start};
      val thm2 = rewrite_rule (map mk_meta_eq @{thms ex_defined_iffs}) thm1;
      val thm3 = rewrite_rule [mk_meta_eq @{thm conj_assoc}] thm2;

      val x = Free ("x", lhsT);
      fun one_con (con, args) =
        let
          val (vs, nonlazy) = get_vars_avoiding ["x"] args;
          val eqn = mk_eq (x, list_ccomb (con, vs));
          val conj = foldr1 mk_conj (eqn :: map mk_defined nonlazy);
        in Library.foldr mk_ex (vs, conj) end;
      val goal = mk_trp (foldr1 mk_disj (mk_undef x :: map one_con spec'));
      (* first 3 rules replace "x = UU \/ P" with "rep$x = UU \/ P" *)
      val tacs = [
          rtac (iso_locale RS @{thm iso.casedist_rule}) 1,
          rewrite_goals_tac [mk_meta_eq (iso_locale RS @{thm iso.iso_swap})],
          rtac thm3 1];
    in
      val exhaust = prove thy con_betas goal (K tacs);
      val casedist =
          (exhaust RS @{thm exh_casedist0})
          |> rewrite_rule @{thms exh_casedists}
          |> Drule.export_without_context;
    end;

    (* prove compactness rules for constructors *)
    val con_compacts =
      let
        val rules = @{thms compact_sinl compact_sinr compact_spair
                           compact_up compact_ONE};
        val tacs =
          [rtac (iso_locale RS @{thm iso.compact_abs}) 1,
           REPEAT (resolve_tac rules 1 ORELSE atac 1)];
        fun con_compact (con, args) =
          let
            val vs = vars_of args;
            val con_app = list_ccomb (con, vs);
            val concl = mk_trp (mk_compact con_app);
            val assms = map (mk_trp o mk_compact) vs;
            val goal = Logic.list_implies (assms, concl);
          in
            prove thy con_betas goal (K tacs)
          end;
      in
        map con_compact spec'
      end;

    (* prove strictness rules for constructors *)
    local
      fun con_strict (con, args) = 
        let
          val rules = abs_strict :: @{thms con_strict_rules};
          val (vs, nonlazy) = get_vars args;
          fun one_strict v' =
            let
              val UU = mk_bottom (fastype_of v');
              val vs' = map (fn v => if v = v' then UU else v) vs;
              val goal = mk_trp (mk_undef (list_ccomb (con, vs')));
              val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
            in prove thy con_betas goal (K tacs) end;
        in map one_strict nonlazy end;

      fun con_defin (con, args) =
        let
          fun iff_disj (t, []) = HOLogic.mk_not t
            | iff_disj (t, ts) = mk_eq (t, foldr1 HOLogic.mk_disj ts);
          val (vs, nonlazy) = get_vars args;
          val lhs = mk_undef (list_ccomb (con, vs));
          val rhss = map mk_undef nonlazy;
          val goal = mk_trp (iff_disj (lhs, rhss));
          val rule1 = iso_locale RS @{thm iso.abs_defined_iff};
          val rules = rule1 :: @{thms con_defined_iff_rules};
          val tacs = [simp_tac (HOL_ss addsimps rules) 1];
        in prove thy con_betas goal (K tacs) end;
    in
      val con_stricts = maps con_strict spec';
      val con_defins = map con_defin spec';
      val con_rews = con_stricts @ con_defins;
    end;

    (* prove injectiveness of constructors *)
    local
      fun pgterm rel (con, args) =
        let
          fun prime (Free (n, T)) = Free (n^"'", T)
            | prime t             = t;
          val (xs, nonlazy) = get_vars args;
          val ys = map prime xs;
          val lhs = rel (list_ccomb (con, xs), list_ccomb (con, ys));
          val rhs = foldr1 mk_conj (ListPair.map rel (xs, ys));
          val concl = mk_trp (mk_eq (lhs, rhs));
          val zs = case args of [_] => [] | _ => nonlazy;
          val assms = map (mk_trp o mk_defined) zs;
          val goal = Logic.list_implies (assms, concl);
        in prove thy con_betas goal end;
      val cons' = filter (fn (_, args) => not (null args)) spec';
    in
      val inverts =
        let
          val abs_below = iso_locale RS @{thm iso.abs_below};
          val rules1 = abs_below :: @{thms sinl_below sinr_below spair_below up_below};
          val rules2 = @{thms up_defined spair_defined ONE_defined}
          val rules = rules1 @ rules2;
          val tacs = [asm_simp_tac (simple_ss addsimps rules) 1];
        in map (fn c => pgterm mk_below c (K tacs)) cons' end;
      val injects =
        let
          val abs_eq = iso_locale RS @{thm iso.abs_eq};
          val rules1 = abs_eq :: @{thms sinl_eq sinr_eq spair_eq up_eq};
          val rules2 = @{thms up_defined spair_defined ONE_defined}
          val rules = rules1 @ rules2;
          val tacs = [asm_simp_tac (simple_ss addsimps rules) 1];
        in map (fn c => pgterm mk_eq c (K tacs)) cons' end;
    end;

    (* prove distinctness of constructors *)
    local
      fun map_dist (f : 'a -> 'a -> 'b) (xs : 'a list) : 'b list =
        flat (map_index (fn (i, x) => map (f x) (nth_drop i xs)) xs);
      fun prime (Free (n, T)) = Free (n^"'", T)
        | prime t             = t;
      fun iff_disj (t, []) = mk_not t
        | iff_disj (t, ts) = mk_eq (t, foldr1 mk_disj ts);
      fun iff_disj2 (t, [], us) = mk_not t
        | iff_disj2 (t, ts, []) = mk_not t
        | iff_disj2 (t, ts, us) =
          mk_eq (t, mk_conj (foldr1 mk_disj ts, foldr1 mk_disj us));
      fun dist_le (con1, args1) (con2, args2) =
        let
          val (vs1, zs1) = get_vars args1;
          val (vs2, zs2) = get_vars args2 |> pairself (map prime);
          val lhs = mk_below (list_ccomb (con1, vs1), list_ccomb (con2, vs2));
          val rhss = map mk_undef zs1;
          val goal = mk_trp (iff_disj (lhs, rhss));
          val rule1 = iso_locale RS @{thm iso.abs_below};
          val rules = rule1 :: @{thms con_below_iff_rules};
          val tacs = [simp_tac (HOL_ss addsimps rules) 1];
        in prove thy con_betas goal (K tacs) end;
      fun dist_eq (con1, args1) (con2, args2) =
        let
          val (vs1, zs1) = get_vars args1;
          val (vs2, zs2) = get_vars args2 |> pairself (map prime);
          val lhs = mk_eq (list_ccomb (con1, vs1), list_ccomb (con2, vs2));
          val rhss1 = map mk_undef zs1;
          val rhss2 = map mk_undef zs2;
          val goal = mk_trp (iff_disj2 (lhs, rhss1, rhss2));
          val rule1 = iso_locale RS @{thm iso.abs_eq};
          val rules = rule1 :: @{thms con_eq_iff_rules};
          val tacs = [simp_tac (HOL_ss addsimps rules) 1];
        in prove thy con_betas goal (K tacs) end;
    in
      val dist_les = map_dist dist_le spec';
      val dist_eqs = map_dist dist_eq spec';
    end;

    val result =
      {
        con_consts = con_consts,
        con_betas = con_betas,
        exhaust = exhaust,
        casedist = casedist,
        con_compacts = con_compacts,
        con_rews = con_rews,
        inverts = inverts,
        injects = injects,
        dist_les = dist_les,
        dist_eqs = dist_eqs
      };
  in
    (result, thy)
  end;

(******************************************************************************)
(**************** definition and theorems for case combinator *****************)
(******************************************************************************)

fun add_case_combinator
    (spec : (term * (bool * typ) list) list)
    (lhsT : typ)
    (dname : string)
    (con_betas : thm list)
    (casedist : thm)
    (iso_locale : thm)
    (rep_const : term)
    (thy : theory)
    : ((typ -> term) * thm list) * theory =
  let

    (* TODO: move these to holcf_library.ML *)
    fun one_when_const T = Const (@{const_name one_when}, T ->> oneT ->> T);
    fun mk_one_when t = one_when_const (fastype_of t) ` t;
    fun mk_sscase (t, u) =
      let
        val (T, V) = dest_cfunT (fastype_of t);
        val (U, V) = dest_cfunT (fastype_of u);
      in sscase_const (T, U, V) ` t ` u end;
    fun strictify_const T = Const (@{const_name strictify}, T ->> T);
    fun mk_strictify t = strictify_const (fastype_of t) ` t;
    fun ssplit_const (T, U, V) =
      Const (@{const_name ssplit}, (T ->> U ->> V) ->> mk_sprodT (T, U) ->> V);
    fun mk_ssplit t =
      let val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of t));
      in ssplit_const (T, U, V) ` t end;
    fun lambda_stuple []      t = mk_one_when t
      | lambda_stuple [x]     t = mk_strictify (big_lambda x t)
      | lambda_stuple [x,y]   t = mk_ssplit (big_lambdas [x, y] t)
      | lambda_stuple (x::xs) t = mk_ssplit (big_lambda x (lambda_stuple xs t));

    (* eta contraction for simplifying definitions *)
    fun cont_eta_contract (Const(@{const_name Abs_CFun},TT) $ Abs(a,T,body)) = 
        (case cont_eta_contract body  of
           body' as (Const(@{const_name Abs_CFun},Ta) $ f $ Bound 0) => 
           if not (0 mem loose_bnos f) then incr_boundvars ~1 f 
           else   Const(@{const_name Abs_CFun},TT) $ Abs(a,T,body')
         | body' => Const(@{const_name Abs_CFun},TT) $ Abs(a,T,body'))
      | cont_eta_contract(f$t) = cont_eta_contract f $ cont_eta_contract t
      | cont_eta_contract t    = t;

    (* prove rep/abs rules *)
    val rep_strict = iso_locale RS @{thm iso.rep_strict};
    val abs_inverse = iso_locale RS @{thm iso.abs_iso};

    (* calculate function arguments of case combinator *)
    val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
    val resultT = TFree (Name.variant tns "'t", @{sort pcpo});
    fun fTs T = map (fn (_, args) => map snd args -->> T) spec;
    val fns = Datatype_Prop.indexify_names (map (K "f") spec);
    val fs = map Free (fns ~~ fTs resultT);
    fun caseT T = fTs T -->> (lhsT ->> T);

    (* definition of case combinator *)
    local
      val case_bind = Binding.name (dname ^ "_when");
      fun one_con f (_, args) =
        let
          fun argT (lazy, T) = if lazy then mk_upT T else T;
          fun down (lazy, T) v = if lazy then from_up T ` v else v;
          val Ts = map argT args;
          val ns = Name.variant_list fns (Datatype_Prop.make_tnames Ts);
          val vs = map Free (ns ~~ Ts);
          val xs = map2 down args vs;
        in
          cont_eta_contract (lambda_stuple vs (list_ccomb (f, xs)))
        end;
      val body = foldr1 mk_sscase (map2 one_con fs spec);
      val rhs = big_lambdas fs (mk_cfcomp (body, rep_const));
      val ((case_consts, case_defs), thy) =
          define_consts [(case_bind, rhs, NoSyn)] thy;
      val case_name = Sign.full_name thy case_bind;
    in
      val case_def = hd case_defs;
      fun case_const T = Const (case_name, caseT T);
      val case_app = list_ccomb (case_const resultT, fs);
      val thy = thy;
    end;

    (* define syntax for case combinator *)
    (* TODO: re-implement case syntax using a parse translation *)
    local
      open Syntax
      fun syntax c = Syntax.mark_const (fst (dest_Const c));
      fun xconst c = Long_Name.base_name (fst (dest_Const c));
      fun c_ast authentic con =
          Constant (if authentic then syntax con else xconst con);
      fun showint n = string_of_int (n+1);
      fun expvar n = Variable ("e" ^ showint n);
      fun argvar n (m, _) = Variable ("a" ^ showint n ^ "_" ^ showint m);
      fun argvars n args = map_index (argvar n) args;
      fun app s (l, r) = mk_appl (Constant s) [l, r];
      val cabs = app "_cabs";
      val capp = app @{const_syntax Rep_CFun};
      val capps = Library.foldl capp
      fun con1 authentic n (con,args) =
          Library.foldl capp (c_ast authentic con, argvars n args);
      fun case1 authentic (n, c) =
          app "_case1" (con1 authentic n c, expvar n);
      fun arg1 (n, (con,args)) = List.foldr cabs (expvar n) (argvars n args);
      fun when1 n (m, c) =
          if n = m then arg1 (n, c) else (Constant @{const_syntax UU});
      val case_constant = Constant (syntax (case_const dummyT));
      fun case_trans authentic =
          ParsePrintRule
            (app "_case_syntax"
              (Variable "x",
               foldr1 (app "_case2") (map_index (case1 authentic) spec)),
             capp (capps (case_constant, map_index arg1 spec), Variable "x"));
      fun one_abscon_trans authentic (n, c) =
          ParsePrintRule
            (cabs (con1 authentic n c, expvar n),
             capps (case_constant, map_index (when1 n) spec));
      fun abscon_trans authentic =
          map_index (one_abscon_trans authentic) spec;
      val trans_rules : ast Syntax.trrule list =
          case_trans false :: case_trans true ::
          abscon_trans false @ abscon_trans true;
    in
      val thy = Sign.add_trrules_i trans_rules thy;
    end;

    (* prove beta reduction rule for case combinator *)
    val case_beta = beta_of_def thy case_def;

    (* prove strictness of case combinator *)
    val case_strict =
      let
        val defs = case_beta :: map mk_meta_eq [rep_strict, @{thm cfcomp2}];
        val goal = mk_trp (mk_strict case_app);
        val tacs = [resolve_tac @{thms sscase1 ssplit1 strictify1} 1];
      in prove thy defs goal (K tacs) end;
        
    (* prove rewrites for case combinator *)
    local
      fun one_case (con, args) f =
        let
          val (vs, nonlazy) = get_vars args;
          val assms = map (mk_trp o mk_defined) nonlazy;
          val lhs = case_app ` list_ccomb (con, vs);
          val rhs = list_ccomb (f, vs);
          val concl = mk_trp (mk_eq (lhs, rhs));
          val goal = Logic.list_implies (assms, concl);
          val defs = case_beta :: con_betas;
          val rules1 = @{thms sscase2 sscase3 ssplit2 fup2 ID1};
          val rules2 = @{thms con_defined_iff_rules};
          val rules3 = @{thms cfcomp2 one_when2};
          val rules = abs_inverse :: rules1 @ rules2 @ rules3;
          val tacs = [asm_simp_tac (beta_ss addsimps rules) 1];
        in prove thy defs goal (K tacs) end;
    in
      val case_apps = map2 one_case spec fs;
    end

  in
    ((case_const, case_strict :: case_apps), thy)
  end

(******************************************************************************)
(************** definitions and theorems for selector functions ***************)
(******************************************************************************)

fun add_selectors
    (spec : (term * (bool * binding option * typ) list) list)
    (rep_const : term)
    (abs_inv : thm)
    (rep_strict : thm)
    (rep_strict_iff : thm)
    (con_betas : thm list)
    (thy : theory)
    : thm list * theory =
  let

    (* define selector functions *)
    val ((sel_consts, sel_defs), thy) =
      let
        fun rangeT s = snd (dest_cfunT (fastype_of s));
        fun mk_outl s = mk_cfcomp (from_sinl (dest_ssumT (rangeT s)), s);
        fun mk_outr s = mk_cfcomp (from_sinr (dest_ssumT (rangeT s)), s);
        fun mk_sfst s = mk_cfcomp (sfst_const (dest_sprodT (rangeT s)), s);
        fun mk_ssnd s = mk_cfcomp (ssnd_const (dest_sprodT (rangeT s)), s);
        fun mk_down s = mk_cfcomp (from_up (dest_upT (rangeT s)), s);

        fun sels_of_arg s (lazy, NONE,   T) = []
          | sels_of_arg s (lazy, SOME b, T) =
            [(b, if lazy then mk_down s else s, NoSyn)];
        fun sels_of_args s [] = []
          | sels_of_args s (v :: []) = sels_of_arg s v
          | sels_of_args s (v :: vs) =
            sels_of_arg (mk_sfst s) v @ sels_of_args (mk_ssnd s) vs;
        fun sels_of_cons s [] = []
          | sels_of_cons s ((con, args) :: []) = sels_of_args s args
          | sels_of_cons s ((con, args) :: cs) =
            sels_of_args (mk_outl s) args @ sels_of_cons (mk_outr s) cs;
        val sel_eqns : (binding * term * mixfix) list =
            sels_of_cons rep_const spec;
      in
        define_consts sel_eqns thy
      end

    (* replace bindings with terms in constructor spec *)
    val spec2 : (term * (bool * term option * typ) list) list =
      let
        fun prep_arg (lazy, NONE, T) sels = ((lazy, NONE, T), sels)
          | prep_arg (lazy, SOME _, T) sels =
            ((lazy, SOME (hd sels), T), tl sels);
        fun prep_con (con, args) sels =
            apfst (pair con) (fold_map prep_arg args sels);
      in
        fst (fold_map prep_con spec sel_consts)
      end;

    (* prove selector strictness rules *)
    val sel_stricts : thm list =
      let
        val rules = rep_strict :: @{thms sel_strict_rules};
        val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
        fun sel_strict sel =
          let
            val goal = mk_trp (mk_strict sel);
          in
            prove thy sel_defs goal (K tacs)
          end
      in
        map sel_strict sel_consts
      end

    (* prove selector application rules *)
    val sel_apps : thm list =
      let
        val defs = con_betas @ sel_defs;
        val rules = abs_inv :: @{thms sel_app_rules};
        val tacs = [asm_simp_tac (simple_ss addsimps rules) 1];
        fun sel_apps_of (i, (con, args)) =
          let
            val Ts : typ list = map #3 args;
            val ns : string list = Datatype_Prop.make_tnames Ts;
            val vs : term list = map Free (ns ~~ Ts);
            val con_app : term = list_ccomb (con, vs);
            val vs' : (bool * term) list = map #1 args ~~ vs;
            fun one_same (n, sel, T) =
              let
                val xs = map snd (filter_out fst (nth_drop n vs'));
                val assms = map (mk_trp o mk_defined) xs;
                val concl = mk_trp (mk_eq (sel ` con_app, nth vs n));
                val goal = Logic.list_implies (assms, concl);
              in
                prove thy defs goal (K tacs)
              end;
            fun one_diff (n, sel, T) =
              let
                val goal = mk_trp (mk_eq (sel ` con_app, mk_bottom T));
              in
                prove thy defs goal (K tacs)
              end;
            fun one_con (j, (_, args')) : thm list =
              let
                fun prep (i, (lazy, NONE, T)) = NONE
                  | prep (i, (lazy, SOME sel, T)) = SOME (i, sel, T);
                val sels : (int * term * typ) list =
                  map_filter prep (map_index I args');
              in
                if i = j
                then map one_same sels
                else map one_diff sels
              end
          in
            flat (map_index one_con spec2)
          end
      in
        flat (map_index sel_apps_of spec2)
      end

  (* prove selector definedness rules *)
    val sel_defins : thm list =
      let
        val rules = rep_strict_iff :: @{thms sel_defined_iff_rules};
        val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
        fun sel_defin sel =
          let
            val (T, U) = dest_cfunT (fastype_of sel);
            val x = Free ("x", T);
            val lhs = mk_eq (sel ` x, mk_bottom U);
            val rhs = mk_eq (x, mk_bottom T);
            val goal = mk_trp (mk_eq (lhs, rhs));
          in
            prove thy sel_defs goal (K tacs)
          end
        fun one_arg (false, SOME sel, T) = SOME (sel_defin sel)
          | one_arg _                    = NONE;
      in
        case spec2 of
          [(con, args)] => map_filter one_arg args
        | _             => []
      end;

  in
    (sel_stricts @ sel_defins @ sel_apps, thy)
  end

(******************************************************************************)
(************ definitions and theorems for discriminator functions ************)
(******************************************************************************)

fun add_discriminators
    (bindings : binding list)
    (spec : (term * (bool * typ) list) list)
    (lhsT : typ)
    (casedist : thm)
    (case_const : typ -> term)
    (case_rews : thm list)
    (thy : theory) =
  let

    fun vars_of args =
      let
        val Ts = map snd args;
        val ns = Datatype_Prop.make_tnames Ts;
      in
        map Free (ns ~~ Ts)
      end;

    (* define discriminator functions *)
    local
      fun dis_fun i (j, (con, args)) =
        let
          val (vs, nonlazy) = get_vars args;
          val tr = if i = j then @{term TT} else @{term FF};
        in
          big_lambdas vs tr
        end;
      fun dis_eqn (i, bind) : binding * term * mixfix =
        let
          val dis_bind = Binding.prefix_name "is_" bind;
          val rhs = list_ccomb (case_const trT, map_index (dis_fun i) spec);
        in
          (dis_bind, rhs, NoSyn)
        end;
    in
      val ((dis_consts, dis_defs), thy) =
          define_consts (map_index dis_eqn bindings) thy
    end;

    (* prove discriminator strictness rules *)
    local
      fun dis_strict dis =
        let val goal = mk_trp (mk_strict dis);
        in prove thy dis_defs goal (K [rtac (hd case_rews) 1]) end;
    in
      val dis_stricts = map dis_strict dis_consts;
    end;

    (* prove discriminator/constructor rules *)
    local
      fun dis_app (i, dis) (j, (con, args)) =
        let
          val (vs, nonlazy) = get_vars args;
          val lhs = dis ` list_ccomb (con, vs);
          val rhs = if i = j then @{term TT} else @{term FF};
          val assms = map (mk_trp o mk_defined) nonlazy;
          val concl = mk_trp (mk_eq (lhs, rhs));
          val goal = Logic.list_implies (assms, concl);
          val tacs = [asm_simp_tac (beta_ss addsimps case_rews) 1];
        in prove thy dis_defs goal (K tacs) end;
      fun one_dis (i, dis) =
          map_index (dis_app (i, dis)) spec;
    in
      val dis_apps = flat (map_index one_dis dis_consts);
    end;

    (* prove discriminator definedness rules *)
    local
      fun dis_defin dis =
        let
          val x = Free ("x", lhsT);
          val simps = dis_apps @ @{thms dist_eq_tr};
          val tacs =
            [rtac @{thm iffI} 1,
             asm_simp_tac (HOL_basic_ss addsimps dis_stricts) 2,
             rtac casedist 1, atac 1,
             DETERM_UNTIL_SOLVED (CHANGED
               (asm_full_simp_tac (simple_ss addsimps simps) 1))];
          val goal = mk_trp (mk_eq (mk_undef (dis ` x), mk_undef x));
        in prove thy [] goal (K tacs) end;
    in
      val dis_defins = map dis_defin dis_consts;
    end;

  in
    (dis_stricts @ dis_defins @ dis_apps, thy)
  end;

(******************************************************************************)
(*************** definitions and theorems for match combinators ***************)
(******************************************************************************)

fun add_match_combinators
    (bindings : binding list)
    (spec : (term * (bool * typ) list) list)
    (lhsT : typ)
    (casedist : thm)
    (case_const : typ -> term)
    (case_rews : thm list)
    (thy : theory) =
  let

    (* get a fresh type variable for the result type *)
    val resultT : typ =
      let
        val ts : string list = map (fst o dest_TFree) (snd (dest_Type lhsT));
        val t : string = Name.variant ts "'t";
      in TFree (t, @{sort pcpo}) end;

    (* define match combinators *)
    local
      val x = Free ("x", lhsT);
      fun k args = Free ("k", map snd args -->> mk_matchT resultT);
      val fail = mk_fail resultT;
      fun mat_fun i (j, (con, args)) =
        let
          val (vs, nonlazy) = get_vars_avoiding ["x","k"] args;
        in
          if i = j then k args else big_lambdas vs fail
        end;
      fun mat_eqn (i, (bind, (con, args))) : binding * term * mixfix =
        let
          val mat_bind = Binding.prefix_name "match_" bind;
          val funs = map_index (mat_fun i) spec
          val body = list_ccomb (case_const (mk_matchT resultT), funs);
          val rhs = big_lambda x (big_lambda (k args) (body ` x));
        in
          (mat_bind, rhs, NoSyn)
        end;
    in
      val ((match_consts, match_defs), thy) =
          define_consts (map_index mat_eqn (bindings ~~ spec)) thy
    end;

    (* register match combinators with fixrec package *)
    local
      val con_names = map (fst o dest_Const o fst) spec;
      val mat_names = map (fst o dest_Const) match_consts;
    in
      val thy = Fixrec.add_matchers (con_names ~~ mat_names) thy;
    end;

    (* prove strictness of match combinators *)
    local
      fun match_strict mat =
        let
          val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of mat));
          val k = Free ("k", U);
          val goal = mk_trp (mk_eq (mat ` mk_bottom T ` k, mk_bottom V));
          val tacs = [asm_simp_tac (beta_ss addsimps case_rews) 1];
        in prove thy match_defs goal (K tacs) end;
    in
      val match_stricts = map match_strict match_consts;
    end;

    (* prove match/constructor rules *)
    local
      val fail = mk_fail resultT;
      fun match_app (i, mat) (j, (con, args)) =
        let
          val (vs, nonlazy) = get_vars_avoiding ["k"] args;
          val (_, (kT, _)) = apsnd dest_cfunT (dest_cfunT (fastype_of mat));
          val k = Free ("k", kT);
          val lhs = mat ` list_ccomb (con, vs) ` k;
          val rhs = if i = j then list_ccomb (k, vs) else fail;
          val assms = map (mk_trp o mk_defined) nonlazy;
          val concl = mk_trp (mk_eq (lhs, rhs));
          val goal = Logic.list_implies (assms, concl);
          val tacs = [asm_simp_tac (beta_ss addsimps case_rews) 1];
        in prove thy match_defs goal (K tacs) end;
      fun one_match (i, mat) =
          map_index (match_app (i, mat)) spec;
    in
      val match_apps = flat (map_index one_match match_consts);
    end;

  in
    (match_stricts @ match_apps, thy)
  end;

(******************************************************************************)
(************** definitions and theorems for pattern combinators **************)
(******************************************************************************)

fun add_pattern_combinators
    (bindings : binding list)
    (spec : (term * (bool * typ) list) list)
    (lhsT : typ)
    (casedist : thm)
    (case_const : typ -> term)
    (case_rews : thm list)
    (thy : theory) =
  let

    (* utility functions *)
    fun mk_pair_pat (p1, p2) =
      let
        val T1 = fastype_of p1;
        val T2 = fastype_of p2;
        val (U1, V1) = apsnd dest_matchT (dest_cfunT T1);
        val (U2, V2) = apsnd dest_matchT (dest_cfunT T2);
        val pat_typ = [T1, T2] --->
            (mk_prodT (U1, U2) ->> mk_matchT (mk_prodT (V1, V2)));
        val pat_const = Const (@{const_name cpair_pat}, pat_typ);
      in
        pat_const $ p1 $ p2
      end;
    fun mk_tuple_pat [] = return_const HOLogic.unitT
      | mk_tuple_pat ps = foldr1 mk_pair_pat ps;
    fun branch_const (T,U,V) = 
      Const (@{const_name branch},
        (T ->> mk_matchT U) --> (U ->> V) ->> T ->> mk_matchT V);

    (* define pattern combinators *)
    local
      val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));

      fun pat_eqn (i, (bind, (con, args))) : binding * term * mixfix =
        let
          val pat_bind = Binding.suffix_name "_pat" bind;
          val Ts = map snd args;
          val Vs =
              (map (K "'t") args)
              |> Datatype_Prop.indexify_names
              |> Name.variant_list tns
              |> map (fn t => TFree (t, @{sort pcpo}));
          val patNs = Datatype_Prop.indexify_names (map (K "pat") args);
          val patTs = map2 (fn T => fn V => T ->> mk_matchT V) Ts Vs;
          val pats = map Free (patNs ~~ patTs);
          val fail = mk_fail (mk_tupleT Vs);
          val (vs, nonlazy) = get_vars_avoiding patNs args;
          val rhs = big_lambdas vs (mk_tuple_pat pats ` mk_tuple vs);
          fun one_fun (j, (_, args')) =
            let
              val (vs', nonlazy) = get_vars_avoiding patNs args';
            in if i = j then rhs else big_lambdas vs' fail end;
          val funs = map_index one_fun spec;
          val body = list_ccomb (case_const (mk_matchT (mk_tupleT Vs)), funs);
        in
          (pat_bind, lambdas pats body, NoSyn)
        end;
    in
      val ((pat_consts, pat_defs), thy) =
          define_consts (map_index pat_eqn (bindings ~~ spec)) thy
    end;

    (* syntax translations for pattern combinators *)
    local
      open Syntax
      fun syntax c = Syntax.mark_const (fst (dest_Const c));
      fun app s (l, r) = Syntax.mk_appl (Constant s) [l, r];
      val capp = app @{const_syntax Rep_CFun};
      val capps = Library.foldl capp

      fun app_var x = Syntax.mk_appl (Constant "_variable") [x, Variable "rhs"];
      fun app_pat x = Syntax.mk_appl (Constant "_pat") [x];
      fun args_list [] = Constant "_noargs"
        | args_list xs = foldr1 (app "_args") xs;
      fun one_case_trans (pat, (con, args)) =
        let
          val cname = Constant (syntax con);
          val pname = Constant (syntax pat);
          val ns = 1 upto length args;
          val xs = map (fn n => Variable ("x"^(string_of_int n))) ns;
          val ps = map (fn n => Variable ("p"^(string_of_int n))) ns;
          val vs = map (fn n => Variable ("v"^(string_of_int n))) ns;
        in
          [ParseRule (app_pat (capps (cname, xs)),
                      mk_appl pname (map app_pat xs)),
           ParseRule (app_var (capps (cname, xs)),
                      app_var (args_list xs)),
           PrintRule (capps (cname, ListPair.map (app "_match") (ps,vs)),
                      app "_match" (mk_appl pname ps, args_list vs))]
        end;
      val trans_rules : Syntax.ast Syntax.trrule list =
          maps one_case_trans (pat_consts ~~ spec);
    in
      val thy = Sign.add_trrules_i trans_rules thy;
    end;

    (* prove strictness and reduction rules of pattern combinators *)
    local
      val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
      val rn = Name.variant tns "'r";
      val R = TFree (rn, @{sort pcpo});
      fun pat_lhs (pat, args) =
        let
          val Ts = map snd args;
          val Vs =
              (map (K "'t") args)
              |> Datatype_Prop.indexify_names
              |> Name.variant_list (rn::tns)
              |> map (fn t => TFree (t, @{sort pcpo}));
          val patNs = Datatype_Prop.indexify_names (map (K "pat") args);
          val patTs = map2 (fn T => fn V => T ->> mk_matchT V) Ts Vs;
          val pats = map Free (patNs ~~ patTs);
          val k = Free ("rhs", mk_tupleT Vs ->> R);
          val branch1 = branch_const (lhsT, mk_tupleT Vs, R);
          val fun1 = (branch1 $ list_comb (pat, pats)) ` k;
          val branch2 = branch_const (mk_tupleT Ts, mk_tupleT Vs, R);
          val fun2 = (branch2 $ mk_tuple_pat pats) ` k;
          val taken = "rhs" :: patNs;
        in (fun1, fun2, taken) end;
      fun pat_strict (pat, (con, args)) =
        let
          val (fun1, fun2, taken) = pat_lhs (pat, args);
          val defs = @{thm branch_def} :: pat_defs;
          val goal = mk_trp (mk_strict fun1);
          val rules = @{thm Fixrec.bind_strict} :: case_rews;
          val tacs = [simp_tac (beta_ss addsimps rules) 1];
        in prove thy defs goal (K tacs) end;
      fun pat_apps (i, (pat, (con, args))) =
        let
          val (fun1, fun2, taken) = pat_lhs (pat, args);
          fun pat_app (j, (con', args')) =
            let
              val (vs, nonlazy) = get_vars_avoiding taken args';
              val con_app = list_ccomb (con', vs);
              val assms = map (mk_trp o mk_defined) nonlazy;
              val rhs = if i = j then fun2 ` mk_tuple vs else mk_fail R;
              val concl = mk_trp (mk_eq (fun1 ` con_app, rhs));
              val goal = Logic.list_implies (assms, concl);
              val defs = @{thm branch_def} :: pat_defs;
              val rules = @{thms bind_fail left_unit} @ case_rews;
              val tacs = [asm_simp_tac (beta_ss addsimps rules) 1];
            in prove thy defs goal (K tacs) end;
        in map_index pat_app spec end;
    in
      val pat_stricts = map pat_strict (pat_consts ~~ spec);
      val pat_apps = flat (map_index pat_apps (pat_consts ~~ spec));
    end;

  in
    (pat_stricts @ pat_apps, thy)
  end

(******************************************************************************)
(******************************* main function ********************************)
(******************************************************************************)

fun add_domain_constructors
    (dname : string)
    (spec : (binding * (bool * binding option * typ) list * mixfix) list)
    (iso_info : Domain_Isomorphism.iso_info)
    (thy : theory) =
  let

    (* retrieve facts about rep/abs *)
    val lhsT = #absT iso_info;
    val {rep_const, abs_const, ...} = iso_info;
    val abs_iso_thm = #abs_inverse iso_info;
    val rep_iso_thm = #rep_inverse iso_info;
    val iso_locale = @{thm iso.intro} OF [abs_iso_thm, rep_iso_thm];
    val rep_strict = iso_locale RS @{thm iso.rep_strict};
    val abs_strict = iso_locale RS @{thm iso.abs_strict};
    val rep_defined_iff = iso_locale RS @{thm iso.rep_defined_iff};
    val abs_defined_iff = iso_locale RS @{thm iso.abs_defined_iff};

    (* qualify constants and theorems with domain name *)
    val thy = Sign.add_path dname thy;

    (* define constructor functions *)
    val (con_result, thy) =
      let
        fun prep_arg (lazy, sel, T) = (lazy, T);
        fun prep_con (b, args, mx) = (b, map prep_arg args, mx);
        val con_spec = map prep_con spec;
      in
        add_constructors con_spec abs_const iso_locale thy
      end;
    val {con_consts, con_betas, casedist, ...} = con_result;

    (* define case combinator *)
    val ((case_const : typ -> term, cases : thm list), thy) =
      let
        fun prep_arg (lazy, sel, T) = (lazy, T);
        fun prep_con c (b, args, mx) = (c, map prep_arg args);
        val case_spec = map2 prep_con con_consts spec;
      in
        add_case_combinator case_spec lhsT dname
          con_betas casedist iso_locale rep_const thy
      end;

    (* define and prove theorems for selector functions *)
    val (sel_thms : thm list, thy : theory) =
      let
        val sel_spec : (term * (bool * binding option * typ) list) list =
          map2 (fn con => fn (b, args, mx) => (con, args)) con_consts spec;
      in
        add_selectors sel_spec rep_const
          abs_iso_thm rep_strict rep_defined_iff con_betas thy
      end;

    (* define and prove theorems for discriminator functions *)
    val (dis_thms : thm list, thy : theory) =
      let
        val bindings = map #1 spec;
        fun prep_arg (lazy, sel, T) = (lazy, T);
        fun prep_con c (b, args, mx) = (c, map prep_arg args);
        val dis_spec = map2 prep_con con_consts spec;
      in
        add_discriminators bindings dis_spec lhsT
          casedist case_const cases thy
      end

    (* define and prove theorems for match combinators *)
    val (match_thms : thm list, thy : theory) =
      let
        val bindings = map #1 spec;
        fun prep_arg (lazy, sel, T) = (lazy, T);
        fun prep_con c (b, args, mx) = (c, map prep_arg args);
        val mat_spec = map2 prep_con con_consts spec;
      in
        add_match_combinators bindings mat_spec lhsT
          casedist case_const cases thy
      end

    (* define and prove theorems for pattern combinators *)
    val (pat_thms : thm list, thy : theory) =
      let
        val bindings = map #1 spec;
        fun prep_arg (lazy, sel, T) = (lazy, T);
        fun prep_con c (b, args, mx) = (c, map prep_arg args);
        val pat_spec = map2 prep_con con_consts spec;
      in
        add_pattern_combinators bindings pat_spec lhsT
          casedist case_const cases thy
      end

    (* restore original signature path *)
    val thy = Sign.parent_path thy;

    val result =
      { con_consts = con_consts,
        con_betas = con_betas,
        exhaust = #exhaust con_result,
        casedist = casedist,
        con_compacts = #con_compacts con_result,
        con_rews = #con_rews con_result,
        inverts = #inverts con_result,
        injects = #injects con_result,
        dist_les = #dist_les con_result,
        dist_eqs = #dist_eqs con_result,
        cases = cases,
        sel_rews = sel_thms,
        dis_rews = dis_thms,
        match_rews = match_thms,
        pat_rews = pat_thms };
  in
    (result, thy)
  end;

end;