(* Title: HOL/Topological_Spaces.thy
Author: Brian Huffman
Author: Johannes Hölzl
*)
header {* Topological Spaces *}
theory Topological_Spaces
imports Main Conditionally_Complete_Lattices
begin
ML {*
structure Continuous_Intros = Named_Thms
(
val name = @{binding continuous_intros}
val description = "Structural introduction rules for continuity"
)
*}
setup Continuous_Intros.setup
subsection {* Topological space *}
class "open" =
fixes "open" :: "'a set \<Rightarrow> bool"
class topological_space = "open" +
assumes open_UNIV [simp, intro]: "open UNIV"
assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)"
assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)"
begin
definition
closed :: "'a set \<Rightarrow> bool" where
"closed S \<longleftrightarrow> open (- S)"
lemma open_empty [continuous_intros, intro, simp]: "open {}"
using open_Union [of "{}"] by simp
lemma open_Un [continuous_intros, intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)"
using open_Union [of "{S, T}"] by simp
lemma open_UN [continuous_intros, intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)"
using open_Union [of "B ` A"] by simp
lemma open_Inter [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)"
by (induct set: finite) auto
lemma open_INT [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)"
using open_Inter [of "B ` A"] by simp
lemma openI:
assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S"
shows "open S"
proof -
have "open (\<Union>{T. open T \<and> T \<subseteq> S})" by auto
moreover have "\<Union>{T. open T \<and> T \<subseteq> S} = S" by (auto dest!: assms)
ultimately show "open S" by simp
qed
lemma closed_empty [continuous_intros, intro, simp]: "closed {}"
unfolding closed_def by simp
lemma closed_Un [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)"
unfolding closed_def by auto
lemma closed_UNIV [continuous_intros, intro, simp]: "closed UNIV"
unfolding closed_def by simp
lemma closed_Int [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)"
unfolding closed_def by auto
lemma closed_INT [continuous_intros, intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)"
unfolding closed_def by auto
lemma closed_Inter [continuous_intros, intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)"
unfolding closed_def uminus_Inf by auto
lemma closed_Union [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)"
by (induct set: finite) auto
lemma closed_UN [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)"
using closed_Union [of "B ` A"] by simp
lemma open_closed: "open S \<longleftrightarrow> closed (- S)"
unfolding closed_def by simp
lemma closed_open: "closed S \<longleftrightarrow> open (- S)"
unfolding closed_def by simp
lemma open_Diff [continuous_intros, intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)"
unfolding closed_open Diff_eq by (rule open_Int)
lemma closed_Diff [continuous_intros, intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)"
unfolding open_closed Diff_eq by (rule closed_Int)
lemma open_Compl [continuous_intros, intro]: "closed S \<Longrightarrow> open (- S)"
unfolding closed_open .
lemma closed_Compl [continuous_intros, intro]: "open S \<Longrightarrow> closed (- S)"
unfolding open_closed .
end
subsection{* Hausdorff and other separation properties *}
class t0_space = topological_space +
assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)"
class t1_space = topological_space +
assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U"
instance t1_space \<subseteq> t0_space
proof qed (fast dest: t1_space)
lemma separation_t1:
fixes x y :: "'a::t1_space"
shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)"
using t1_space[of x y] by blast
lemma closed_singleton:
fixes a :: "'a::t1_space"
shows "closed {a}"
proof -
let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
have "open ?T" by (simp add: open_Union)
also have "?T = - {a}"
by (simp add: set_eq_iff separation_t1, auto)
finally show "closed {a}" unfolding closed_def .
qed
lemma closed_insert [continuous_intros, simp]:
fixes a :: "'a::t1_space"
assumes "closed S" shows "closed (insert a S)"
proof -
from closed_singleton assms
have "closed ({a} \<union> S)" by (rule closed_Un)
thus "closed (insert a S)" by simp
qed
lemma finite_imp_closed:
fixes S :: "'a::t1_space set"
shows "finite S \<Longrightarrow> closed S"
by (induct set: finite, simp_all)
text {* T2 spaces are also known as Hausdorff spaces. *}
class t2_space = topological_space +
assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
instance t2_space \<subseteq> t1_space
proof qed (fast dest: hausdorff)
lemma separation_t2:
fixes x y :: "'a::t2_space"
shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
using hausdorff[of x y] by blast
lemma separation_t0:
fixes x y :: "'a::t0_space"
shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))"
using t0_space[of x y] by blast
text {* A perfect space is a topological space with no isolated points. *}
class perfect_space = topological_space +
assumes not_open_singleton: "\<not> open {x}"
subsection {* Generators for toplogies *}
inductive generate_topology for S where
UNIV: "generate_topology S UNIV"
| Int: "generate_topology S a \<Longrightarrow> generate_topology S b \<Longrightarrow> generate_topology S (a \<inter> b)"
| UN: "(\<And>k. k \<in> K \<Longrightarrow> generate_topology S k) \<Longrightarrow> generate_topology S (\<Union>K)"
| Basis: "s \<in> S \<Longrightarrow> generate_topology S s"
hide_fact (open) UNIV Int UN Basis
lemma generate_topology_Union:
"(\<And>k. k \<in> I \<Longrightarrow> generate_topology S (K k)) \<Longrightarrow> generate_topology S (\<Union>k\<in>I. K k)"
using generate_topology.UN [of "K ` I"] by auto
lemma topological_space_generate_topology:
"class.topological_space (generate_topology S)"
by default (auto intro: generate_topology.intros)
subsection {* Order topologies *}
class order_topology = order + "open" +
assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
begin
subclass topological_space
unfolding open_generated_order
by (rule topological_space_generate_topology)
lemma open_greaterThan [continuous_intros, simp]: "open {a <..}"
unfolding open_generated_order by (auto intro: generate_topology.Basis)
lemma open_lessThan [continuous_intros, simp]: "open {..< a}"
unfolding open_generated_order by (auto intro: generate_topology.Basis)
lemma open_greaterThanLessThan [continuous_intros, simp]: "open {a <..< b}"
unfolding greaterThanLessThan_eq by (simp add: open_Int)
end
class linorder_topology = linorder + order_topology
lemma closed_atMost [continuous_intros, simp]: "closed {.. a::'a::linorder_topology}"
by (simp add: closed_open)
lemma closed_atLeast [continuous_intros, simp]: "closed {a::'a::linorder_topology ..}"
by (simp add: closed_open)
lemma closed_atLeastAtMost [continuous_intros, simp]: "closed {a::'a::linorder_topology .. b}"
proof -
have "{a .. b} = {a ..} \<inter> {.. b}"
by auto
then show ?thesis
by (simp add: closed_Int)
qed
lemma (in linorder) less_separate:
assumes "x < y"
shows "\<exists>a b. x \<in> {..< a} \<and> y \<in> {b <..} \<and> {..< a} \<inter> {b <..} = {}"
proof (cases "\<exists>z. x < z \<and> z < y")
case True
then obtain z where "x < z \<and> z < y" ..
then have "x \<in> {..< z} \<and> y \<in> {z <..} \<and> {z <..} \<inter> {..< z} = {}"
by auto
then show ?thesis by blast
next
case False
with `x < y` have "x \<in> {..< y} \<and> y \<in> {x <..} \<and> {x <..} \<inter> {..< y} = {}"
by auto
then show ?thesis by blast
qed
instance linorder_topology \<subseteq> t2_space
proof
fix x y :: 'a
from less_separate[of x y] less_separate[of y x]
show "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
by (elim neqE) (metis open_lessThan open_greaterThan Int_commute)+
qed
lemma (in linorder_topology) open_right:
assumes "open S" "x \<in> S" and gt_ex: "x < y" shows "\<exists>b>x. {x ..< b} \<subseteq> S"
using assms unfolding open_generated_order
proof induction
case (Int A B)
then obtain a b where "a > x" "{x ..< a} \<subseteq> A" "b > x" "{x ..< b} \<subseteq> B" by auto
then show ?case by (auto intro!: exI[of _ "min a b"])
next
case (Basis S) then show ?case by (fastforce intro: exI[of _ y] gt_ex)
qed blast+
lemma (in linorder_topology) open_left:
assumes "open S" "x \<in> S" and lt_ex: "y < x" shows "\<exists>b<x. {b <.. x} \<subseteq> S"
using assms unfolding open_generated_order
proof induction
case (Int A B)
then obtain a b where "a < x" "{a <.. x} \<subseteq> A" "b < x" "{b <.. x} \<subseteq> B" by auto
then show ?case by (auto intro!: exI[of _ "max a b"])
next
case (Basis S) then show ?case by (fastforce intro: exI[of _ y] lt_ex)
qed blast+
subsection {* Filters *}
text {*
This definition also allows non-proper filters.
*}
locale is_filter =
fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
assumes True: "F (\<lambda>x. True)"
assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)"
assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)"
typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
proof
show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro)
qed
lemma is_filter_Rep_filter: "is_filter (Rep_filter F)"
using Rep_filter [of F] by simp
lemma Abs_filter_inverse':
assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F"
using assms by (simp add: Abs_filter_inverse)
subsubsection {* Eventually *}
definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
where "eventually P F \<longleftrightarrow> Rep_filter F P"
lemma eventually_Abs_filter:
assumes "is_filter F" shows "eventually P (Abs_filter F) = F P"
unfolding eventually_def using assms by (simp add: Abs_filter_inverse)
lemma filter_eq_iff:
shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')"
unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def ..
lemma eventually_True [simp]: "eventually (\<lambda>x. True) F"
unfolding eventually_def
by (rule is_filter.True [OF is_filter_Rep_filter])
lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F"
proof -
assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext)
thus "eventually P F" by simp
qed
lemma eventually_mono:
"(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P F \<Longrightarrow> eventually Q F"
unfolding eventually_def
by (rule is_filter.mono [OF is_filter_Rep_filter])
lemma eventually_conj:
assumes P: "eventually (\<lambda>x. P x) F"
assumes Q: "eventually (\<lambda>x. Q x) F"
shows "eventually (\<lambda>x. P x \<and> Q x) F"
using assms unfolding eventually_def
by (rule is_filter.conj [OF is_filter_Rep_filter])
lemma eventually_Ball_finite:
assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net"
shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net"
using assms by (induct set: finite, simp, simp add: eventually_conj)
lemma eventually_all_finite:
fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool"
assumes "\<And>y. eventually (\<lambda>x. P x y) net"
shows "eventually (\<lambda>x. \<forall>y. P x y) net"
using eventually_Ball_finite [of UNIV P] assms by simp
lemma eventually_mp:
assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
assumes "eventually (\<lambda>x. P x) F"
shows "eventually (\<lambda>x. Q x) F"
proof (rule eventually_mono)
show "\<forall>x. (P x \<longrightarrow> Q x) \<and> P x \<longrightarrow> Q x" by simp
show "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F"
using assms by (rule eventually_conj)
qed
lemma eventually_rev_mp:
assumes "eventually (\<lambda>x. P x) F"
assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
shows "eventually (\<lambda>x. Q x) F"
using assms(2) assms(1) by (rule eventually_mp)
lemma eventually_conj_iff:
"eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F"
by (auto intro: eventually_conj elim: eventually_rev_mp)
lemma eventually_elim1:
assumes "eventually (\<lambda>i. P i) F"
assumes "\<And>i. P i \<Longrightarrow> Q i"
shows "eventually (\<lambda>i. Q i) F"
using assms by (auto elim!: eventually_rev_mp)
lemma eventually_elim2:
assumes "eventually (\<lambda>i. P i) F"
assumes "eventually (\<lambda>i. Q i) F"
assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i"
shows "eventually (\<lambda>i. R i) F"
using assms by (auto elim!: eventually_rev_mp)
lemma eventually_subst:
assumes "eventually (\<lambda>n. P n = Q n) F"
shows "eventually P F = eventually Q F" (is "?L = ?R")
proof -
from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F"
by (auto elim: eventually_elim1)
then show ?thesis by (auto elim: eventually_elim2)
qed
ML {*
fun eventually_elim_tac ctxt thms = SUBGOAL_CASES (fn (_, _, st) =>
let
val thy = Proof_Context.theory_of ctxt
val mp_thms = thms RL [@{thm eventually_rev_mp}]
val raw_elim_thm =
(@{thm allI} RS @{thm always_eventually})
|> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms
|> fold (fn _ => fn thm => @{thm impI} RS thm) thms
val cases_prop = prop_of (raw_elim_thm RS st)
val cases = (Rule_Cases.make_common (thy, cases_prop) [(("elim", []), [])])
in
CASES cases (rtac raw_elim_thm 1)
end) 1
*}
method_setup eventually_elim = {*
Scan.succeed (fn ctxt => METHOD_CASES (eventually_elim_tac ctxt))
*} "elimination of eventually quantifiers"
subsubsection {* Finer-than relation *}
text {* @{term "F \<le> F'"} means that filter @{term F} is finer than
filter @{term F'}. *}
instantiation filter :: (type) complete_lattice
begin
definition le_filter_def:
"F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)"
definition
"(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
definition
"top = Abs_filter (\<lambda>P. \<forall>x. P x)"
definition
"bot = Abs_filter (\<lambda>P. True)"
definition
"sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')"
definition
"inf F F' = Abs_filter
(\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
definition
"Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)"
definition
"Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)"
unfolding top_filter_def
by (rule eventually_Abs_filter, rule is_filter.intro, auto)
lemma eventually_bot [simp]: "eventually P bot"
unfolding bot_filter_def
by (subst eventually_Abs_filter, rule is_filter.intro, auto)
lemma eventually_sup:
"eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'"
unfolding sup_filter_def
by (rule eventually_Abs_filter, rule is_filter.intro)
(auto elim!: eventually_rev_mp)
lemma eventually_inf:
"eventually P (inf F F') \<longleftrightarrow>
(\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
unfolding inf_filter_def
apply (rule eventually_Abs_filter, rule is_filter.intro)
apply (fast intro: eventually_True)
apply clarify
apply (intro exI conjI)
apply (erule (1) eventually_conj)
apply (erule (1) eventually_conj)
apply simp
apply auto
done
lemma eventually_Sup:
"eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)"
unfolding Sup_filter_def
apply (rule eventually_Abs_filter, rule is_filter.intro)
apply (auto intro: eventually_conj elim!: eventually_rev_mp)
done
instance proof
fix F F' F'' :: "'a filter" and S :: "'a filter set"
{ show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
by (rule less_filter_def) }
{ show "F \<le> F"
unfolding le_filter_def by simp }
{ assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
unfolding le_filter_def by simp }
{ assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
unfolding le_filter_def filter_eq_iff by fast }
{ show "inf F F' \<le> F" and "inf F F' \<le> F'"
unfolding le_filter_def eventually_inf by (auto intro: eventually_True) }
{ assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
unfolding le_filter_def eventually_inf
by (auto elim!: eventually_mono intro: eventually_conj) }
{ show "F \<le> sup F F'" and "F' \<le> sup F F'"
unfolding le_filter_def eventually_sup by simp_all }
{ assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
unfolding le_filter_def eventually_sup by simp }
{ assume "F'' \<in> S" thus "Inf S \<le> F''"
unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
{ assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
{ assume "F \<in> S" thus "F \<le> Sup S"
unfolding le_filter_def eventually_Sup by simp }
{ assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
unfolding le_filter_def eventually_Sup by simp }
{ show "Inf {} = (top::'a filter)"
by (auto simp: top_filter_def Inf_filter_def Sup_filter_def)
(metis (full_types) top_filter_def always_eventually eventually_top) }
{ show "Sup {} = (bot::'a filter)"
by (auto simp: bot_filter_def Sup_filter_def) }
qed
end
lemma filter_leD:
"F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F"
unfolding le_filter_def by simp
lemma filter_leI:
"(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'"
unfolding le_filter_def by simp
lemma eventually_False:
"eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot"
unfolding filter_eq_iff by (auto elim: eventually_rev_mp)
abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool"
where "trivial_limit F \<equiv> F = bot"
lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F"
by (rule eventually_False [symmetric])
lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P"
by (cases P) (simp_all add: eventually_False)
lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))"
proof -
let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)"
{ fix P have "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P"
proof (rule eventually_Abs_filter is_filter.intro)+
show "?F (\<lambda>x. True)"
by (rule exI[of _ "{}"]) (simp add: le_fun_def)
next
fix P Q
assume "?F P" then guess X ..
moreover
assume "?F Q" then guess Y ..
ultimately show "?F (\<lambda>x. P x \<and> Q x)"
by (intro exI[of _ "X \<union> Y"])
(auto simp: Inf_union_distrib eventually_inf)
next
fix P Q
assume "?F P" then guess X ..
moreover assume "\<forall>x. P x \<longrightarrow> Q x"
ultimately show "?F Q"
by (intro exI[of _ X]) (auto elim: eventually_elim1)
qed }
note eventually_F = this
have "Inf B = Abs_filter ?F"
proof (intro antisym Inf_greatest)
show "Inf B \<le> Abs_filter ?F"
by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono)
next
fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F"
by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
qed
then show ?thesis
by (simp add: eventually_F)
qed
lemma eventually_INF: "eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (INF b:X. F b))"
unfolding INF_def[of B] eventually_Inf[of P "F`B"]
by (metis Inf_image_eq finite_imageI image_mono finite_subset_image)
lemma Inf_filter_not_bot:
fixes B :: "'a filter set"
shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot"
unfolding trivial_limit_def eventually_Inf[of _ B]
bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
lemma INF_filter_not_bot:
fixes F :: "'i \<Rightarrow> 'a filter"
shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (INF b:X. F b) \<noteq> bot) \<Longrightarrow> (INF b:B. F b) \<noteq> bot"
unfolding trivial_limit_def eventually_INF[of _ B]
bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
lemma eventually_Inf_base:
assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)"
proof (subst eventually_Inf, safe)
fix X assume "finite X" "X \<subseteq> B"
then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x"
proof induct
case empty then show ?case
using `B \<noteq> {}` by auto
next
case (insert x X)
then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x"
by auto
with `insert x X \<subseteq> B` base[of b x] show ?case
by (auto intro: order_trans)
qed
then obtain b where "b \<in> B" "b \<le> Inf X"
by (auto simp: le_Inf_iff)
then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)"
by (intro bexI[of _ b]) (auto simp: le_filter_def)
qed (auto intro!: exI[of _ "{x}" for x])
lemma eventually_INF_base:
"B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))"
unfolding INF_def by (subst eventually_Inf_base) auto
subsubsection {* Map function for filters *}
definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)"
lemma eventually_filtermap:
"eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F"
unfolding filtermap_def
apply (rule eventually_Abs_filter)
apply (rule is_filter.intro)
apply (auto elim!: eventually_rev_mp)
done
lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F"
by (simp add: filter_eq_iff eventually_filtermap)
lemma filtermap_filtermap:
"filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F"
by (simp add: filter_eq_iff eventually_filtermap)
lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'"
unfolding le_filter_def eventually_filtermap by simp
lemma filtermap_bot [simp]: "filtermap f bot = bot"
by (simp add: filter_eq_iff eventually_filtermap)
lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)"
by (auto simp: filter_eq_iff eventually_filtermap eventually_sup)
lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)"
by (auto simp: le_filter_def eventually_filtermap eventually_inf)
lemma filtermap_INF: "filtermap f (INF b:B. F b) \<le> (INF b:B. filtermap f (F b))"
proof -
{ fix X :: "'c set" assume "finite X"
then have "filtermap f (INFIMUM X F) \<le> (INF b:X. filtermap f (F b))"
proof induct
case (insert x X)
have "filtermap f (INF a:insert x X. F a) \<le> inf (filtermap f (F x)) (filtermap f (INF a:X. F a))"
by (rule order_trans[OF _ filtermap_inf]) simp
also have "\<dots> \<le> inf (filtermap f (F x)) (INF a:X. filtermap f (F a))"
by (intro inf_mono insert order_refl)
finally show ?case
by simp
qed simp }
then show ?thesis
unfolding le_filter_def eventually_filtermap
by (subst (1 2) eventually_INF) auto
qed
subsubsection {* Standard filters *}
definition principal :: "'a set \<Rightarrow> 'a filter" where
"principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)"
lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)"
unfolding principal_def
by (rule eventually_Abs_filter, rule is_filter.intro) auto
lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F"
unfolding eventually_inf eventually_principal by (auto elim: eventually_elim1)
lemma principal_UNIV[simp]: "principal UNIV = top"
by (auto simp: filter_eq_iff eventually_principal)
lemma principal_empty[simp]: "principal {} = bot"
by (auto simp: filter_eq_iff eventually_principal)
lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
by (auto simp add: filter_eq_iff eventually_principal)
lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B"
by (auto simp: le_filter_def eventually_principal)
lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F"
unfolding le_filter_def eventually_principal
apply safe
apply (erule_tac x="\<lambda>x. x \<in> A" in allE)
apply (auto elim: eventually_elim1)
done
lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B"
unfolding eq_iff by simp
lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)"
unfolding filter_eq_iff eventually_sup eventually_principal by auto
lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)"
unfolding filter_eq_iff eventually_inf eventually_principal
by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"])
lemma SUP_principal[simp]: "(SUP i : I. principal (A i)) = principal (\<Union>i\<in>I. A i)"
unfolding filter_eq_iff eventually_Sup SUP_def by (auto simp: eventually_principal)
lemma INF_principal_finite: "finite X \<Longrightarrow> (INF x:X. principal (f x)) = principal (\<Inter>x\<in>X. f x)"
by (induct X rule: finite_induct) auto
lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)"
unfolding filter_eq_iff eventually_filtermap eventually_principal by simp
subsubsection {* Order filters *}
definition at_top :: "('a::order) filter"
where "at_top = (INF k. principal {k ..})"
lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)"
unfolding at_top_def
by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
lemma eventually_ge_at_top:
"eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top"
unfolding eventually_at_top_linorder by auto
lemma (in linorder) Ici_subset_Ioi_iff: "{a ..} \<subseteq> {b <..} \<longleftrightarrow> b < a"
by auto
lemma (in linorder) Iic_subset_Iio_iff: "{.. a} \<subseteq> {..< b} \<longleftrightarrow> a < b"
by auto
lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
proof -
have "eventually P (INF k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
also have "(INF k. principal {k::'a <..}) = at_top"
unfolding at_top_def
by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex)
finally show ?thesis .
qed
lemma eventually_gt_at_top:
"eventually (\<lambda>x. (c::_::unbounded_dense_linorder) < x) at_top"
unfolding eventually_at_top_dense by auto
definition at_bot :: "('a::order) filter"
where "at_bot = (INF k. principal {.. k})"
lemma eventually_at_bot_linorder:
fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)"
unfolding at_bot_def
by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
lemma eventually_le_at_bot:
"eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot"
unfolding eventually_at_bot_linorder by auto
lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
proof -
have "eventually P (INF k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
also have "(INF k. principal {..< k::'a}) = at_bot"
unfolding at_bot_def
by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex)
finally show ?thesis .
qed
lemma eventually_gt_at_bot:
"eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot"
unfolding eventually_at_bot_dense by auto
lemma trivial_limit_at_bot_linorder: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
unfolding trivial_limit_def
by (metis eventually_at_bot_linorder order_refl)
lemma trivial_limit_at_top_linorder: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
unfolding trivial_limit_def
by (metis eventually_at_top_linorder order_refl)
subsection {* Sequentially *}
abbreviation sequentially :: "nat filter"
where "sequentially \<equiv> at_top"
lemma eventually_sequentially:
"eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)"
by (rule eventually_at_top_linorder)
lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot"
unfolding filter_eq_iff eventually_sequentially by auto
lemmas trivial_limit_sequentially = sequentially_bot
lemma eventually_False_sequentially [simp]:
"\<not> eventually (\<lambda>n. False) sequentially"
by (simp add: eventually_False)
lemma le_sequentially:
"F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)"
by (simp add: at_top_def le_INF_iff le_principal)
lemma eventually_sequentiallyI:
assumes "\<And>x. c \<le> x \<Longrightarrow> P x"
shows "eventually P sequentially"
using assms by (auto simp: eventually_sequentially)
lemma eventually_sequentially_seg:
"eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially"
unfolding eventually_sequentially
apply safe
apply (rule_tac x="N + k" in exI)
apply rule
apply (erule_tac x="n - k" in allE)
apply auto []
apply (rule_tac x=N in exI)
apply auto []
done
subsubsection {* Topological filters *}
definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter"
where "nhds a = (INF S:{S. open S \<and> a \<in> S}. principal S)"
definition (in topological_space) at_within :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a filter" ("at (_) within (_)" [1000, 60] 60)
where "at a within s = inf (nhds a) (principal (s - {a}))"
abbreviation (in topological_space) at :: "'a \<Rightarrow> 'a filter" ("at") where
"at x \<equiv> at x within (CONST UNIV)"
abbreviation (in order_topology) at_right :: "'a \<Rightarrow> 'a filter" where
"at_right x \<equiv> at x within {x <..}"
abbreviation (in order_topology) at_left :: "'a \<Rightarrow> 'a filter" where
"at_left x \<equiv> at x within {..< x}"
lemma (in topological_space) eventually_nhds:
"eventually P (nhds a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
unfolding nhds_def by (subst eventually_INF_base) (auto simp: eventually_principal)
lemma nhds_neq_bot [simp]: "nhds a \<noteq> bot"
unfolding trivial_limit_def eventually_nhds by simp
lemma eventually_at_filter:
"eventually P (at a within s) \<longleftrightarrow> eventually (\<lambda>x. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x) (nhds a)"
unfolding at_within_def eventually_inf_principal by (simp add: imp_conjL[symmetric] conj_commute)
lemma at_le: "s \<subseteq> t \<Longrightarrow> at x within s \<le> at x within t"
unfolding at_within_def by (intro inf_mono) auto
lemma eventually_at_topological:
"eventually P (at a within s) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x))"
unfolding eventually_nhds eventually_at_filter by simp
lemma at_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> at a within S = at a"
unfolding filter_eq_iff eventually_at_topological by (metis open_Int Int_iff UNIV_I)
lemma at_within_empty [simp]: "at a within {} = bot"
unfolding at_within_def by simp
lemma at_within_union: "at x within (S \<union> T) = sup (at x within S) (at x within T)"
unfolding filter_eq_iff eventually_sup eventually_at_filter
by (auto elim!: eventually_rev_mp)
lemma at_eq_bot_iff: "at a = bot \<longleftrightarrow> open {a}"
unfolding trivial_limit_def eventually_at_topological
by (safe, case_tac "S = {a}", simp, fast, fast)
lemma at_neq_bot [simp]: "at (a::'a::perfect_space) \<noteq> bot"
by (simp add: at_eq_bot_iff not_open_singleton)
lemma eventually_at_right:
fixes x :: "'a :: linorder_topology"
assumes gt_ex: "x < y"
shows "eventually P (at_right x) \<longleftrightarrow> (\<exists>b. x < b \<and> (\<forall>z. x < z \<and> z < b \<longrightarrow> P z))"
unfolding eventually_at_topological
proof safe
note gt_ex
moreover fix S assume "open S" "x \<in> S" note open_right[OF this, of y]
moreover assume "\<forall>s\<in>S. s \<noteq> x \<longrightarrow> s \<in> {x<..} \<longrightarrow> P s"
ultimately show "\<exists>b>x. \<forall>z. x < z \<and> z < b \<longrightarrow> P z"
by (auto simp: subset_eq Ball_def)
next
fix b assume "x < b" "\<forall>z. x < z \<and> z < b \<longrightarrow> P z"
then show "\<exists>S. open S \<and> x \<in> S \<and> (\<forall>xa\<in>S. xa \<noteq> x \<longrightarrow> xa \<in> {x<..} \<longrightarrow> P xa)"
by (intro exI[of _ "{..< b}"]) auto
qed
lemma eventually_at_left:
fixes x :: "'a :: linorder_topology"
assumes lt_ex: "y < x"
shows "eventually P (at_left x) \<longleftrightarrow> (\<exists>b. x > b \<and> (\<forall>z. b < z \<and> z < x \<longrightarrow> P z))"
unfolding eventually_at_topological
proof safe
note lt_ex
moreover fix S assume "open S" "x \<in> S" note open_left[OF this, of y]
moreover assume "\<forall>s\<in>S. s \<noteq> x \<longrightarrow> s \<in> {..<x} \<longrightarrow> P s"
ultimately show "\<exists>b<x. \<forall>z. b < z \<and> z < x \<longrightarrow> P z"
by (auto simp: subset_eq Ball_def)
next
fix b assume "b < x" "\<forall>z. b < z \<and> z < x \<longrightarrow> P z"
then show "\<exists>S. open S \<and> x \<in> S \<and> (\<forall>s\<in>S. s \<noteq> x \<longrightarrow> s \<in> {..<x} \<longrightarrow> P s)"
by (intro exI[of _ "{b <..}"]) auto
qed
lemma trivial_limit_at_right_top: "at_right (top::_::{order_top, linorder_topology}) = bot"
unfolding filter_eq_iff eventually_at_topological by auto
lemma trivial_limit_at_left_bot: "at_left (bot::_::{order_bot, linorder_topology}) = bot"
unfolding filter_eq_iff eventually_at_topological by auto
lemma trivial_limit_at_left_real [simp]:
"\<not> trivial_limit (at_left (x::'a::{no_bot, dense_order, linorder_topology}))"
using lt_ex[of x]
by safe (auto simp add: trivial_limit_def eventually_at_left dest: dense)
lemma trivial_limit_at_right_real [simp]:
"\<not> trivial_limit (at_right (x::'a::{no_top, dense_order, linorder_topology}))"
using gt_ex[of x]
by safe (auto simp add: trivial_limit_def eventually_at_right dest: dense)
lemma at_eq_sup_left_right: "at (x::'a::linorder_topology) = sup (at_left x) (at_right x)"
by (auto simp: eventually_at_filter filter_eq_iff eventually_sup
elim: eventually_elim2 eventually_elim1)
lemma eventually_at_split:
"eventually P (at (x::'a::linorder_topology)) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)"
by (subst at_eq_sup_left_right) (simp add: eventually_sup)
subsection {* Limits *}
definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
"filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2"
syntax
"_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
translations
"LIM x F1. f :> F2" == "CONST filterlim (%x. f) F2 F1"
lemma filterlim_iff:
"(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)"
unfolding filterlim_def le_filter_def eventually_filtermap ..
lemma filterlim_compose:
"filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1"
unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans)
lemma filterlim_mono:
"filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'"
unfolding filterlim_def by (metis filtermap_mono order_trans)
lemma filterlim_ident: "LIM x F. x :> F"
by (simp add: filterlim_def filtermap_ident)
lemma filterlim_cong:
"F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'"
by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2)
lemma filterlim_mono_eventually:
assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G"
assumes eq: "eventually (\<lambda>x. f x = f' x) G'"
shows "filterlim f' F' G'"
apply (rule filterlim_cong[OF refl refl eq, THEN iffD1])
apply (rule filterlim_mono[OF _ ord])
apply fact
done
lemma filterlim_principal:
"(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)"
unfolding filterlim_def eventually_filtermap le_principal ..
lemma filterlim_inf:
"(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))"
unfolding filterlim_def by simp
lemma filterlim_INF:
"(LIM x F. f x :> (INF b:B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)"
unfolding filterlim_def le_INF_iff ..
lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2"
unfolding filterlim_def filtermap_filtermap ..
lemma filterlim_sup:
"filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)"
unfolding filterlim_def filtermap_sup by auto
lemma filterlim_Suc: "filterlim Suc sequentially sequentially"
by (simp add: filterlim_iff eventually_sequentially) (metis le_Suc_eq)
subsubsection {* Tendsto *}
abbreviation (in topological_space)
tendsto :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool" (infixr "--->" 55) where
"(f ---> l) F \<equiv> filterlim f (nhds l) F"
definition (in t2_space) Lim :: "'f filter \<Rightarrow> ('f \<Rightarrow> 'a) \<Rightarrow> 'a" where
"Lim A f = (THE l. (f ---> l) A)"
lemma tendsto_eq_rhs: "(f ---> x) F \<Longrightarrow> x = y \<Longrightarrow> (f ---> y) F"
by simp
ML {*
structure Tendsto_Intros = Named_Thms
(
val name = @{binding tendsto_intros}
val description = "introduction rules for tendsto"
)
*}
setup {*
Tendsto_Intros.setup #>
Global_Theory.add_thms_dynamic (@{binding tendsto_eq_intros},
map_filter (try (fn thm => @{thm tendsto_eq_rhs} OF [thm])) o Tendsto_Intros.get o Context.proof_of);
*}
lemma (in topological_space) tendsto_def:
"(f ---> l) F \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F)"
unfolding nhds_def filterlim_INF filterlim_principal by auto
lemma tendsto_mono: "F \<le> F' \<Longrightarrow> (f ---> l) F' \<Longrightarrow> (f ---> l) F"
unfolding tendsto_def le_filter_def by fast
lemma tendsto_within_subset: "(f ---> l) (at x within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f ---> l) (at x within T)"
by (blast intro: tendsto_mono at_le)
lemma filterlim_at:
"(LIM x F. f x :> at b within s) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> s \<and> f x \<noteq> b) F \<and> (f ---> b) F)"
by (simp add: at_within_def filterlim_inf filterlim_principal conj_commute)
lemma (in topological_space) topological_tendstoI:
"(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F) \<Longrightarrow> (f ---> l) F"
unfolding tendsto_def by auto
lemma (in topological_space) topological_tendstoD:
"(f ---> l) F \<Longrightarrow> open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
unfolding tendsto_def by auto
lemma order_tendstoI:
fixes y :: "_ :: order_topology"
assumes "\<And>a. a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F"
assumes "\<And>a. y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F"
shows "(f ---> y) F"
proof (rule topological_tendstoI)
fix S assume "open S" "y \<in> S"
then show "eventually (\<lambda>x. f x \<in> S) F"
unfolding open_generated_order
proof induct
case (UN K)
then obtain k where "y \<in> k" "k \<in> K" by auto
with UN(2)[of k] show ?case
by (auto elim: eventually_elim1)
qed (insert assms, auto elim: eventually_elim2)
qed
lemma order_tendstoD:
fixes y :: "_ :: order_topology"
assumes y: "(f ---> y) F"
shows "a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F"
and "y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F"
using topological_tendstoD[OF y, of "{..< a}"] topological_tendstoD[OF y, of "{a <..}"] by auto
lemma order_tendsto_iff:
fixes f :: "_ \<Rightarrow> 'a :: order_topology"
shows "(f ---> x) F \<longleftrightarrow>(\<forall>l<x. eventually (\<lambda>x. l < f x) F) \<and> (\<forall>u>x. eventually (\<lambda>x. f x < u) F)"
by (metis order_tendstoI order_tendstoD)
lemma tendsto_bot [simp]: "(f ---> a) bot"
unfolding tendsto_def by simp
lemma tendsto_max:
fixes x y :: "'a::linorder_topology"
assumes X: "(X ---> x) net"
assumes Y: "(Y ---> y) net"
shows "((\<lambda>x. max (X x) (Y x)) ---> max x y) net"
proof (rule order_tendstoI)
fix a assume "a < max x y"
then show "eventually (\<lambda>x. a < max (X x) (Y x)) net"
using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a]
by (auto simp: less_max_iff_disj elim: eventually_elim1)
next
fix a assume "max x y < a"
then show "eventually (\<lambda>x. max (X x) (Y x) < a) net"
using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a]
by (auto simp: eventually_conj_iff)
qed
lemma tendsto_min:
fixes x y :: "'a::linorder_topology"
assumes X: "(X ---> x) net"
assumes Y: "(Y ---> y) net"
shows "((\<lambda>x. min (X x) (Y x)) ---> min x y) net"
proof (rule order_tendstoI)
fix a assume "a < min x y"
then show "eventually (\<lambda>x. a < min (X x) (Y x)) net"
using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a]
by (auto simp: eventually_conj_iff)
next
fix a assume "min x y < a"
then show "eventually (\<lambda>x. min (X x) (Y x) < a) net"
using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a]
by (auto simp: min_less_iff_disj elim: eventually_elim1)
qed
lemma tendsto_ident_at [tendsto_intros]: "((\<lambda>x. x) ---> a) (at a within s)"
unfolding tendsto_def eventually_at_topological by auto
lemma (in topological_space) tendsto_const [tendsto_intros]: "((\<lambda>x. k) ---> k) F"
by (simp add: tendsto_def)
lemma (in t2_space) tendsto_unique:
assumes "\<not> trivial_limit F" and "(f ---> a) F" and "(f ---> b) F"
shows "a = b"
proof (rule ccontr)
assume "a \<noteq> b"
obtain U V where "open U" "open V" "a \<in> U" "b \<in> V" "U \<inter> V = {}"
using hausdorff [OF `a \<noteq> b`] by fast
have "eventually (\<lambda>x. f x \<in> U) F"
using `(f ---> a) F` `open U` `a \<in> U` by (rule topological_tendstoD)
moreover
have "eventually (\<lambda>x. f x \<in> V) F"
using `(f ---> b) F` `open V` `b \<in> V` by (rule topological_tendstoD)
ultimately
have "eventually (\<lambda>x. False) F"
proof eventually_elim
case (elim x)
hence "f x \<in> U \<inter> V" by simp
with `U \<inter> V = {}` show ?case by simp
qed
with `\<not> trivial_limit F` show "False"
by (simp add: trivial_limit_def)
qed
lemma (in t2_space) tendsto_const_iff:
assumes "\<not> trivial_limit F" shows "((\<lambda>x. a :: 'a) ---> b) F \<longleftrightarrow> a = b"
by (safe intro!: tendsto_const tendsto_unique [OF assms tendsto_const])
lemma increasing_tendsto:
fixes f :: "_ \<Rightarrow> 'a::order_topology"
assumes bdd: "eventually (\<lambda>n. f n \<le> l) F"
and en: "\<And>x. x < l \<Longrightarrow> eventually (\<lambda>n. x < f n) F"
shows "(f ---> l) F"
using assms by (intro order_tendstoI) (auto elim!: eventually_elim1)
lemma decreasing_tendsto:
fixes f :: "_ \<Rightarrow> 'a::order_topology"
assumes bdd: "eventually (\<lambda>n. l \<le> f n) F"
and en: "\<And>x. l < x \<Longrightarrow> eventually (\<lambda>n. f n < x) F"
shows "(f ---> l) F"
using assms by (intro order_tendstoI) (auto elim!: eventually_elim1)
lemma tendsto_sandwich:
fixes f g h :: "'a \<Rightarrow> 'b::order_topology"
assumes ev: "eventually (\<lambda>n. f n \<le> g n) net" "eventually (\<lambda>n. g n \<le> h n) net"
assumes lim: "(f ---> c) net" "(h ---> c) net"
shows "(g ---> c) net"
proof (rule order_tendstoI)
fix a show "a < c \<Longrightarrow> eventually (\<lambda>x. a < g x) net"
using order_tendstoD[OF lim(1), of a] ev by (auto elim: eventually_elim2)
next
fix a show "c < a \<Longrightarrow> eventually (\<lambda>x. g x < a) net"
using order_tendstoD[OF lim(2), of a] ev by (auto elim: eventually_elim2)
qed
lemma tendsto_le:
fixes f g :: "'a \<Rightarrow> 'b::linorder_topology"
assumes F: "\<not> trivial_limit F"
assumes x: "(f ---> x) F" and y: "(g ---> y) F"
assumes ev: "eventually (\<lambda>x. g x \<le> f x) F"
shows "y \<le> x"
proof (rule ccontr)
assume "\<not> y \<le> x"
with less_separate[of x y] obtain a b where xy: "x < a" "b < y" "{..<a} \<inter> {b<..} = {}"
by (auto simp: not_le)
then have "eventually (\<lambda>x. f x < a) F" "eventually (\<lambda>x. b < g x) F"
using x y by (auto intro: order_tendstoD)
with ev have "eventually (\<lambda>x. False) F"
by eventually_elim (insert xy, fastforce)
with F show False
by (simp add: eventually_False)
qed
lemma tendsto_le_const:
fixes f :: "'a \<Rightarrow> 'b::linorder_topology"
assumes F: "\<not> trivial_limit F"
assumes x: "(f ---> x) F" and a: "eventually (\<lambda>i. a \<le> f i) F"
shows "a \<le> x"
using F x tendsto_const a by (rule tendsto_le)
lemma tendsto_ge_const:
fixes f :: "'a \<Rightarrow> 'b::linorder_topology"
assumes F: "\<not> trivial_limit F"
assumes x: "(f ---> x) F" and a: "eventually (\<lambda>i. a \<ge> f i) F"
shows "a \<ge> x"
by (rule tendsto_le [OF F tendsto_const x a])
subsubsection {* Rules about @{const Lim} *}
lemma tendsto_Lim:
"\<not>(trivial_limit net) \<Longrightarrow> (f ---> l) net \<Longrightarrow> Lim net f = l"
unfolding Lim_def using tendsto_unique[of net f] by auto
lemma Lim_ident_at: "\<not> trivial_limit (at x within s) \<Longrightarrow> Lim (at x within s) (\<lambda>x. x) = x"
by (rule tendsto_Lim[OF _ tendsto_ident_at]) auto
subsection {* Limits to @{const at_top} and @{const at_bot} *}
lemma filterlim_at_top:
fixes f :: "'a \<Rightarrow> ('b::linorder)"
shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)"
by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1)
lemma filterlim_at_top_dense:
fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)"
by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le
filterlim_at_top[of f F] filterlim_iff[of f at_top F])
lemma filterlim_at_top_ge:
fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)"
unfolding filterlim_at_top
proof safe
fix Z assume *: "\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F"
with *[THEN spec, of "max Z c"] show "eventually (\<lambda>x. Z \<le> f x) F"
by (auto elim!: eventually_elim1)
qed simp
lemma filterlim_at_top_at_top:
fixes f :: "'a::linorder \<Rightarrow> 'b::linorder"
assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
assumes Q: "eventually Q at_top"
assumes P: "eventually P at_top"
shows "filterlim f at_top at_top"
proof -
from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
unfolding eventually_at_top_linorder by auto
show ?thesis
proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
fix z assume "x \<le> z"
with x have "P z" by auto
have "eventually (\<lambda>x. g z \<le> x) at_top"
by (rule eventually_ge_at_top)
with Q show "eventually (\<lambda>x. z \<le> f x) at_top"
by eventually_elim (metis mono bij `P z`)
qed
qed
lemma filterlim_at_top_gt:
fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)"
by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge)
lemma filterlim_at_bot:
fixes f :: "'a \<Rightarrow> ('b::linorder)"
shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)"
by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_elim1)
lemma filterlim_at_bot_le:
fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)"
unfolding filterlim_at_bot
proof safe
fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F"
with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F"
by (auto elim!: eventually_elim1)
qed simp
lemma filterlim_at_bot_lt:
fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
lemma filterlim_at_bot_at_right:
fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder"
assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
assumes Q: "eventually Q (at_right a)" and bound: "\<And>b. Q b \<Longrightarrow> a < b"
assumes P: "eventually P at_bot"
shows "filterlim f at_bot (at_right a)"
proof -
from P obtain x where x: "\<And>y. y \<le> x \<Longrightarrow> P y"
unfolding eventually_at_bot_linorder by auto
show ?thesis
proof (intro filterlim_at_bot_le[THEN iffD2] allI impI)
fix z assume "z \<le> x"
with x have "P z" by auto
have "eventually (\<lambda>x. x \<le> g z) (at_right a)"
using bound[OF bij(2)[OF `P z`]]
unfolding eventually_at_right[OF bound[OF bij(2)[OF `P z`]]] by (auto intro!: exI[of _ "g z"])
with Q show "eventually (\<lambda>x. f x \<le> z) (at_right a)"
by eventually_elim (metis bij `P z` mono)
qed
qed
lemma filterlim_at_top_at_left:
fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder"
assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
assumes Q: "eventually Q (at_left a)" and bound: "\<And>b. Q b \<Longrightarrow> b < a"
assumes P: "eventually P at_top"
shows "filterlim f at_top (at_left a)"
proof -
from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
unfolding eventually_at_top_linorder by auto
show ?thesis
proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
fix z assume "x \<le> z"
with x have "P z" by auto
have "eventually (\<lambda>x. g z \<le> x) (at_left a)"
using bound[OF bij(2)[OF `P z`]]
unfolding eventually_at_left[OF bound[OF bij(2)[OF `P z`]]] by (auto intro!: exI[of _ "g z"])
with Q show "eventually (\<lambda>x. z \<le> f x) (at_left a)"
by eventually_elim (metis bij `P z` mono)
qed
qed
lemma filterlim_split_at:
"filterlim f F (at_left x) \<Longrightarrow> filterlim f F (at_right x) \<Longrightarrow> filterlim f F (at (x::'a::linorder_topology))"
by (subst at_eq_sup_left_right) (rule filterlim_sup)
lemma filterlim_at_split:
"filterlim f F (at (x::'a::linorder_topology)) \<longleftrightarrow> filterlim f F (at_left x) \<and> filterlim f F (at_right x)"
by (subst at_eq_sup_left_right) (simp add: filterlim_def filtermap_sup)
lemma eventually_nhds_top:
fixes P :: "'a :: {order_top, linorder_topology} \<Rightarrow> bool"
assumes "(b::'a) < top"
shows "eventually P (nhds top) \<longleftrightarrow> (\<exists>b<top. (\<forall>z. b < z \<longrightarrow> P z))"
unfolding eventually_nhds
proof safe
fix S :: "'a set" assume "open S" "top \<in> S"
note open_left[OF this `b < top`]
moreover assume "\<forall>s\<in>S. P s"
ultimately show "\<exists>b<top. \<forall>z>b. P z"
by (auto simp: subset_eq Ball_def)
next
fix b assume "b < top" "\<forall>z>b. P z"
then show "\<exists>S. open S \<and> top \<in> S \<and> (\<forall>xa\<in>S. P xa)"
by (intro exI[of _ "{b <..}"]) auto
qed
subsection {* Limits on sequences *}
abbreviation (in topological_space)
LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool"
("((_)/ ----> (_))" [60, 60] 60) where
"X ----> L \<equiv> (X ---> L) sequentially"
abbreviation (in t2_space) lim :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a" where
"lim X \<equiv> Lim sequentially X"
definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where
"convergent X = (\<exists>L. X ----> L)"
lemma lim_def: "lim X = (THE L. X ----> L)"
unfolding Lim_def ..
subsubsection {* Monotone sequences and subsequences *}
definition
monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
--{*Definition of monotonicity.
The use of disjunction here complicates proofs considerably.
One alternative is to add a Boolean argument to indicate the direction.
Another is to develop the notions of increasing and decreasing first.*}
"monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) \<or> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"
abbreviation incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
"incseq X \<equiv> mono X"
lemma incseq_def: "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<ge> X m)"
unfolding mono_def ..
abbreviation decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
"decseq X \<equiv> antimono X"
lemma decseq_def: "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)"
unfolding antimono_def ..
definition
subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" where
--{*Definition of subsequence*}
"subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)"
lemma incseq_SucI:
"(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X"
using lift_Suc_mono_le[of X]
by (auto simp: incseq_def)
lemma incseqD: "\<And>i j. incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j"
by (auto simp: incseq_def)
lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)"
using incseqD[of A i "Suc i"] by auto
lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
by (auto intro: incseq_SucI dest: incseq_SucD)
lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)"
unfolding incseq_def by auto
lemma decseq_SucI:
"(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X"
using order.lift_Suc_mono_le[OF dual_order, of X]
by (auto simp: decseq_def)
lemma decseqD: "\<And>i j. decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i"
by (auto simp: decseq_def)
lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i"
using decseqD[of A i "Suc i"] by auto
lemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)"
by (auto intro: decseq_SucI dest: decseq_SucD)
lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)"
unfolding decseq_def by auto
lemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X"
unfolding monoseq_def incseq_def decseq_def ..
lemma monoseq_Suc:
"monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)"
unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff ..
lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X"
by (simp add: monoseq_def)
lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X"
by (simp add: monoseq_def)
lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X"
by (simp add: monoseq_Suc)
lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X"
by (simp add: monoseq_Suc)
lemma monoseq_minus:
fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add"
assumes "monoseq a"
shows "monoseq (\<lambda> n. - a n)"
proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n")
case True
hence "\<forall> m. \<forall> n \<ge> m. - a n \<le> - a m" by auto
thus ?thesis by (rule monoI2)
next
case False
hence "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" using `monoseq a`[unfolded monoseq_def] by auto
thus ?thesis by (rule monoI1)
qed
text{*Subsequence (alternative definition, (e.g. Hoskins)*}
lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))"
apply (simp add: subseq_def)
apply (auto dest!: less_imp_Suc_add)
apply (induct_tac k)
apply (auto intro: less_trans)
done
text{* for any sequence, there is a monotonic subsequence *}
lemma seq_monosub:
fixes s :: "nat => 'a::linorder"
shows "\<exists>f. subseq f \<and> monoseq (\<lambda> n. (s (f n)))"
proof cases
let "?P p n" = "p > n \<and> (\<forall>m\<ge>p. s m \<le> s p)"
assume *: "\<forall>n. \<exists>p. ?P p n"
def f \<equiv> "rec_nat (SOME p. ?P p 0) (\<lambda>_ n. SOME p. ?P p n)"
have f_0: "f 0 = (SOME p. ?P p 0)" unfolding f_def by simp
have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat.rec(2) ..
have P_0: "?P (f 0) 0" unfolding f_0 using *[rule_format] by (rule someI2_ex) auto
have P_Suc: "\<And>i. ?P (f (Suc i)) (f i)" unfolding f_Suc using *[rule_format] by (rule someI2_ex) auto
then have "subseq f" unfolding subseq_Suc_iff by auto
moreover have "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc
proof (intro disjI2 allI)
fix n show "s (f (Suc n)) \<le> s (f n)"
proof (cases n)
case 0 with P_Suc[of 0] P_0 show ?thesis by auto
next
case (Suc m)
from P_Suc[of n] Suc have "f (Suc m) \<le> f (Suc (Suc m))" by simp
with P_Suc Suc show ?thesis by simp
qed
qed
ultimately show ?thesis by auto
next
let "?P p m" = "m < p \<and> s m < s p"
assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. s m \<le> s p))"
then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. s p < s m" by (force simp: not_le le_less)
def f \<equiv> "rec_nat (SOME p. ?P p (Suc N)) (\<lambda>_ n. SOME p. ?P p n)"
have f_0: "f 0 = (SOME p. ?P p (Suc N))" unfolding f_def by simp
have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat.rec(2) ..
have P_0: "?P (f 0) (Suc N)"
unfolding f_0 some_eq_ex[of "\<lambda>p. ?P p (Suc N)"] using N[of "Suc N"] by auto
{ fix i have "N < f i \<Longrightarrow> ?P (f (Suc i)) (f i)"
unfolding f_Suc some_eq_ex[of "\<lambda>p. ?P p (f i)"] using N[of "f i"] . }
note P' = this
{ fix i have "N < f i \<and> ?P (f (Suc i)) (f i)"
by (induct i) (insert P_0 P', auto) }
then have "subseq f" "monoseq (\<lambda>x. s (f x))"
unfolding subseq_Suc_iff monoseq_Suc by (auto simp: not_le intro: less_imp_le)
then show ?thesis by auto
qed
lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"
proof(induct n)
case 0 thus ?case by simp
next
case (Suc n)
from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps
have "n < f (Suc n)" by arith
thus ?case by arith
qed
lemma eventually_subseq:
"subseq r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially"
unfolding eventually_sequentially by (metis seq_suble le_trans)
lemma not_eventually_sequentiallyD:
assumes P: "\<not> eventually P sequentially"
shows "\<exists>r. subseq r \<and> (\<forall>n. \<not> P (r n))"
proof -
from P have "\<forall>n. \<exists>m\<ge>n. \<not> P m"
unfolding eventually_sequentially by (simp add: not_less)
then obtain r where "\<And>n. r n \<ge> n" "\<And>n. \<not> P (r n)"
by (auto simp: choice_iff)
then show ?thesis
by (auto intro!: exI[of _ "\<lambda>n. r (((Suc \<circ> r) ^^ Suc n) 0)"]
simp: less_eq_Suc_le subseq_Suc_iff)
qed
lemma filterlim_subseq: "subseq f \<Longrightarrow> filterlim f sequentially sequentially"
unfolding filterlim_iff by (metis eventually_subseq)
lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)"
unfolding subseq_def by simp
lemma subseq_mono: assumes "subseq r" "m < n" shows "r m < r n"
using assms by (auto simp: subseq_def)
lemma incseq_imp_monoseq: "incseq X \<Longrightarrow> monoseq X"
by (simp add: incseq_def monoseq_def)
lemma decseq_imp_monoseq: "decseq X \<Longrightarrow> monoseq X"
by (simp add: decseq_def monoseq_def)
lemma decseq_eq_incseq:
fixes X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" shows "decseq X = incseq (\<lambda>n. - X n)"
by (simp add: decseq_def incseq_def)
lemma INT_decseq_offset:
assumes "decseq F"
shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
proof safe
fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
show "x \<in> F i"
proof cases
from x have "x \<in> F n" by auto
also assume "i \<le> n" with `decseq F` have "F n \<subseteq> F i"
unfolding decseq_def by simp
finally show ?thesis .
qed (insert x, simp)
qed auto
lemma LIMSEQ_const_iff:
fixes k l :: "'a::t2_space"
shows "(\<lambda>n. k) ----> l \<longleftrightarrow> k = l"
using trivial_limit_sequentially by (rule tendsto_const_iff)
lemma LIMSEQ_SUP:
"incseq X \<Longrightarrow> X ----> (SUP i. X i :: 'a :: {complete_linorder, linorder_topology})"
by (intro increasing_tendsto)
(auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans)
lemma LIMSEQ_INF:
"decseq X \<Longrightarrow> X ----> (INF i. X i :: 'a :: {complete_linorder, linorder_topology})"
by (intro decreasing_tendsto)
(auto simp: INF_lower INF_less_iff decseq_def eventually_sequentially intro: le_less_trans)
lemma LIMSEQ_ignore_initial_segment:
"f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a"
unfolding tendsto_def
by (subst eventually_sequentially_seg[where k=k])
lemma LIMSEQ_offset:
"(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a"
unfolding tendsto_def
by (subst (asm) eventually_sequentially_seg[where k=k])
lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l"
by (drule_tac k="Suc 0" in LIMSEQ_ignore_initial_segment, simp)
lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l"
by (rule_tac k="Suc 0" in LIMSEQ_offset, simp)
lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l"
by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc)
lemma LIMSEQ_unique:
fixes a b :: "'a::t2_space"
shows "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b"
using trivial_limit_sequentially by (rule tendsto_unique)
lemma LIMSEQ_le_const:
"\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x"
using tendsto_le_const[of sequentially X x a] by (simp add: eventually_sequentially)
lemma LIMSEQ_le:
"\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::'a::linorder_topology)"
using tendsto_le[of sequentially Y y X x] by (simp add: eventually_sequentially)
lemma LIMSEQ_le_const2:
"\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a"
by (rule LIMSEQ_le[of X x "\<lambda>n. a"]) (auto simp: tendsto_const)
lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)"
by (simp add: convergent_def)
lemma convergentI: "(X ----> L) ==> convergent X"
by (auto simp add: convergent_def)
lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)"
by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def)
lemma convergent_const: "convergent (\<lambda>n. c)"
by (rule convergentI, rule tendsto_const)
lemma monoseq_le:
"monoseq a \<Longrightarrow> a ----> (x::'a::linorder_topology) \<Longrightarrow>
((\<forall> n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)) \<or> ((\<forall> n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m))"
by (metis LIMSEQ_le_const LIMSEQ_le_const2 decseq_def incseq_def monoseq_iff)
lemma LIMSEQ_subseq_LIMSEQ:
"\<lbrakk> X ----> L; subseq f \<rbrakk> \<Longrightarrow> (X o f) ----> L"
unfolding comp_def by (rule filterlim_compose[of X, OF _ filterlim_subseq])
lemma convergent_subseq_convergent:
"\<lbrakk>convergent X; subseq f\<rbrakk> \<Longrightarrow> convergent (X o f)"
unfolding convergent_def by (auto intro: LIMSEQ_subseq_LIMSEQ)
lemma limI: "X ----> L ==> lim X = L"
by (rule tendsto_Lim) (rule trivial_limit_sequentially)
lemma lim_le: "convergent f \<Longrightarrow> (\<And>n. f n \<le> (x::'a::linorder_topology)) \<Longrightarrow> lim f \<le> x"
using LIMSEQ_le_const2[of f "lim f" x] by (simp add: convergent_LIMSEQ_iff)
subsubsection{*Increasing and Decreasing Series*}
lemma incseq_le: "incseq X \<Longrightarrow> X ----> L \<Longrightarrow> X n \<le> (L::'a::linorder_topology)"
by (metis incseq_def LIMSEQ_le_const)
lemma decseq_le: "decseq X \<Longrightarrow> X ----> L \<Longrightarrow> (L::'a::linorder_topology) \<le> X n"
by (metis decseq_def LIMSEQ_le_const2)
subsection {* First countable topologies *}
class first_countable_topology = topological_space +
assumes first_countable_basis:
"\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
lemma (in first_countable_topology) countable_basis_at_decseq:
obtains A :: "nat \<Rightarrow> 'a set" where
"\<And>i. open (A i)" "\<And>i. x \<in> (A i)"
"\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
proof atomize_elim
from first_countable_basis[of x] obtain A :: "nat \<Rightarrow> 'a set" where
nhds: "\<And>i. open (A i)" "\<And>i. x \<in> A i"
and incl: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S" by auto
def F \<equiv> "\<lambda>n. \<Inter>i\<le>n. A i"
show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and>
(\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially)"
proof (safe intro!: exI[of _ F])
fix i
show "open (F i)" using nhds(1) by (auto simp: F_def)
show "x \<in> F i" using nhds(2) by (auto simp: F_def)
next
fix S assume "open S" "x \<in> S"
from incl[OF this] obtain i where "F i \<subseteq> S" unfolding F_def by auto
moreover have "\<And>j. i \<le> j \<Longrightarrow> F j \<subseteq> F i"
by (auto simp: F_def)
ultimately show "eventually (\<lambda>i. F i \<subseteq> S) sequentially"
by (auto simp: eventually_sequentially)
qed
qed
lemma (in first_countable_topology) countable_basis:
obtains A :: "nat \<Rightarrow> 'a set" where
"\<And>i. open (A i)" "\<And>i. x \<in> A i"
"\<And>F. (\<forall>n. F n \<in> A n) \<Longrightarrow> F ----> x"
proof atomize_elim
obtain A :: "nat \<Rightarrow> 'a set" where A:
"\<And>i. open (A i)"
"\<And>i. x \<in> A i"
"\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
by (rule countable_basis_at_decseq) blast
{
fix F S assume "\<forall>n. F n \<in> A n" "open S" "x \<in> S"
with A(3)[of S] have "eventually (\<lambda>n. F n \<in> S) sequentially"
by (auto elim: eventually_elim1 simp: subset_eq)
}
with A show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> (\<forall>F. (\<forall>n. F n \<in> A n) \<longrightarrow> F ----> x)"
by (intro exI[of _ A]) (auto simp: tendsto_def)
qed
lemma (in first_countable_topology) sequentially_imp_eventually_nhds_within:
assumes "\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially"
shows "eventually P (inf (nhds a) (principal s))"
proof (rule ccontr)
obtain A :: "nat \<Rightarrow> 'a set" where A:
"\<And>i. open (A i)"
"\<And>i. a \<in> A i"
"\<And>F. \<forall>n. F n \<in> A n \<Longrightarrow> F ----> a"
by (rule countable_basis) blast
assume "\<not> ?thesis"
with A have P: "\<exists>F. \<forall>n. F n \<in> s \<and> F n \<in> A n \<and> \<not> P (F n)"
unfolding eventually_inf_principal eventually_nhds by (intro choice) fastforce
then obtain F where F0: "\<forall>n. F n \<in> s" and F2: "\<forall>n. F n \<in> A n" and F3: "\<forall>n. \<not> P (F n)"
by blast
with A have "F ----> a" by auto
hence "eventually (\<lambda>n. P (F n)) sequentially"
using assms F0 by simp
thus "False" by (simp add: F3)
qed
lemma (in first_countable_topology) eventually_nhds_within_iff_sequentially:
"eventually P (inf (nhds a) (principal s)) \<longleftrightarrow>
(\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)"
proof (safe intro!: sequentially_imp_eventually_nhds_within)
assume "eventually P (inf (nhds a) (principal s))"
then obtain S where "open S" "a \<in> S" "\<forall>x\<in>S. x \<in> s \<longrightarrow> P x"
by (auto simp: eventually_inf_principal eventually_nhds)
moreover fix f assume "\<forall>n. f n \<in> s" "f ----> a"
ultimately show "eventually (\<lambda>n. P (f n)) sequentially"
by (auto dest!: topological_tendstoD elim: eventually_elim1)
qed
lemma (in first_countable_topology) eventually_nhds_iff_sequentially:
"eventually P (nhds a) \<longleftrightarrow> (\<forall>f. f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)"
using eventually_nhds_within_iff_sequentially[of P a UNIV] by simp
subsection {* Function limit at a point *}
abbreviation
LIM :: "('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
"f -- a --> L \<equiv> (f ---> L) (at a)"
lemma tendsto_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> (f ---> l) (at a within S) \<longleftrightarrow> (f -- a --> l)"
unfolding tendsto_def by (simp add: at_within_open[where S=S])
lemma LIM_const_not_eq[tendsto_intros]:
fixes a :: "'a::perfect_space"
fixes k L :: "'b::t2_space"
shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --> L"
by (simp add: tendsto_const_iff)
lemmas LIM_not_zero = LIM_const_not_eq [where L = 0]
lemma LIM_const_eq:
fixes a :: "'a::perfect_space"
fixes k L :: "'b::t2_space"
shows "(\<lambda>x. k) -- a --> L \<Longrightarrow> k = L"
by (simp add: tendsto_const_iff)
lemma LIM_unique:
fixes a :: "'a::perfect_space" and L M :: "'b::t2_space"
shows "f -- a --> L \<Longrightarrow> f -- a --> M \<Longrightarrow> L = M"
using at_neq_bot by (rule tendsto_unique)
text {* Limits are equal for functions equal except at limit point *}
lemma LIM_equal: "\<forall>x. x \<noteq> a --> (f x = g x) \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- a --> l)"
unfolding tendsto_def eventually_at_topological by simp
lemma LIM_cong: "a = b \<Longrightarrow> (\<And>x. x \<noteq> b \<Longrightarrow> f x = g x) \<Longrightarrow> l = m \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- b --> m)"
by (simp add: LIM_equal)
lemma LIM_cong_limit: "f -- x --> L \<Longrightarrow> K = L \<Longrightarrow> f -- x --> K"
by simp
lemma tendsto_at_iff_tendsto_nhds:
"g -- l --> g l \<longleftrightarrow> (g ---> g l) (nhds l)"
unfolding tendsto_def eventually_at_filter
by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1)
lemma tendsto_compose:
"g -- l --> g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
unfolding tendsto_at_iff_tendsto_nhds by (rule filterlim_compose[of g])
lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l"
unfolding o_def by (rule tendsto_compose)
lemma tendsto_compose_eventually:
"g -- l --> m \<Longrightarrow> (f ---> l) F \<Longrightarrow> eventually (\<lambda>x. f x \<noteq> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> m) F"
by (rule filterlim_compose[of g _ "at l"]) (auto simp add: filterlim_at)
lemma LIM_compose_eventually:
assumes f: "f -- a --> b"
assumes g: "g -- b --> c"
assumes inj: "eventually (\<lambda>x. f x \<noteq> b) (at a)"
shows "(\<lambda>x. g (f x)) -- a --> c"
using g f inj by (rule tendsto_compose_eventually)
subsubsection {* Relation of LIM and LIMSEQ *}
lemma (in first_countable_topology) sequentially_imp_eventually_within:
"(\<forall>f. (\<forall>n. f n \<in> s \<and> f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow>
eventually P (at a within s)"
unfolding at_within_def
by (intro sequentially_imp_eventually_nhds_within) auto
lemma (in first_countable_topology) sequentially_imp_eventually_at:
"(\<forall>f. (\<forall>n. f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> eventually P (at a)"
using assms sequentially_imp_eventually_within [where s=UNIV] by simp
lemma LIMSEQ_SEQ_conv1:
fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
assumes f: "f -- a --> l"
shows "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l"
using tendsto_compose_eventually [OF f, where F=sequentially] by simp
lemma LIMSEQ_SEQ_conv2:
fixes f :: "'a::first_countable_topology \<Rightarrow> 'b::topological_space"
assumes "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l"
shows "f -- a --> l"
using assms unfolding tendsto_def [where l=l] by (simp add: sequentially_imp_eventually_at)
lemma LIMSEQ_SEQ_conv:
"(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> (a::'a::first_countable_topology) \<longrightarrow> (\<lambda>n. X (S n)) ----> L) =
(X -- a --> (L::'b::topological_space))"
using LIMSEQ_SEQ_conv2 LIMSEQ_SEQ_conv1 ..
lemma sequentially_imp_eventually_at_left:
fixes a :: "'a :: {dense_linorder, linorder_topology, first_countable_topology}"
assumes b[simp]: "b < a"
assumes *: "\<And>f. (\<And>n. b < f n) \<Longrightarrow> (\<And>n. f n < a) \<Longrightarrow> incseq f \<Longrightarrow> f ----> a \<Longrightarrow> eventually (\<lambda>n. P (f n)) sequentially"
shows "eventually P (at_left a)"
proof (safe intro!: sequentially_imp_eventually_within)
fix X assume X: "\<forall>n. X n \<in> {..<a} \<and> X n \<noteq> a" "X ----> a"
show "eventually (\<lambda>n. P (X n)) sequentially"
proof (rule ccontr)
assume "\<not> eventually (\<lambda>n. P (X n)) sequentially"
from not_eventually_sequentiallyD[OF this]
obtain r where "subseq r" "\<And>n. \<not> P (X (r n))"
by auto
with X have "(X \<circ> r) ----> a"
by (auto intro: LIMSEQ_subseq_LIMSEQ)
from order_tendstoD(1)[OF this] obtain s' where s': "\<And>b i. b < a \<Longrightarrow> s' b \<le> i \<Longrightarrow> b < X (r i)"
unfolding eventually_sequentially comp_def by metis
def s \<equiv> "rec_nat (s' b) (\<lambda>_ i. max (s' (X (r i))) (Suc i))"
then have [simp]: "s 0 = s' b" "\<And>n. s (Suc n) = max (s' (X (r (s n)))) (Suc (s n))"
by auto
have "eventually (\<lambda>n. P (((X \<circ> r) \<circ> s) n)) sequentially"
proof (rule *)
from X show inc: "incseq (X \<circ> r \<circ> s)"
unfolding incseq_Suc_iff comp_def by (intro allI s'[THEN less_imp_le]) auto
{ fix n show "b < (X \<circ> r \<circ> s) n"
using inc[THEN incseqD, of 0 n] s'[OF b order_refl] by simp }
{ fix n show "(X \<circ> r \<circ> s) n < a"
using X by simp }
from `(X \<circ> r) ----> a` show "(X \<circ> r \<circ> s) ----> a"
by (rule LIMSEQ_subseq_LIMSEQ) (auto simp: subseq_Suc_iff)
qed
with `\<And>n. \<not> P (X (r n))` show False
by auto
qed
qed
lemma tendsto_at_left_sequentially:
fixes a :: "_ :: {dense_linorder, linorder_topology, first_countable_topology}"
assumes "b < a"
assumes *: "\<And>S. (\<And>n. S n < a) \<Longrightarrow> (\<And>n. b < S n) \<Longrightarrow> incseq S \<Longrightarrow> S ----> a \<Longrightarrow> (\<lambda>n. X (S n)) ----> L"
shows "(X ---> L) (at_left a)"
using assms unfolding tendsto_def [where l=L]
by (simp add: sequentially_imp_eventually_at_left)
subsection {* Continuity *}
subsubsection {* Continuity on a set *}
definition continuous_on :: "'a set \<Rightarrow> ('a :: topological_space \<Rightarrow> 'b :: topological_space) \<Rightarrow> bool" where
"continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f ---> f x) (at x within s))"
lemma continuous_on_cong [cong]:
"s = t \<Longrightarrow> (\<And>x. x \<in> t \<Longrightarrow> f x = g x) \<Longrightarrow> continuous_on s f \<longleftrightarrow> continuous_on t g"
unfolding continuous_on_def by (intro ball_cong filterlim_cong) (auto simp: eventually_at_filter)
lemma continuous_on_topological:
"continuous_on s f \<longleftrightarrow>
(\<forall>x\<in>s. \<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))"
unfolding continuous_on_def tendsto_def eventually_at_topological by metis
lemma continuous_on_open_invariant:
"continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s))"
proof safe
fix B :: "'b set" assume "continuous_on s f" "open B"
then have "\<forall>x\<in>f -` B \<inter> s. (\<exists>A. open A \<and> x \<in> A \<and> s \<inter> A \<subseteq> f -` B)"
by (auto simp: continuous_on_topological subset_eq Ball_def imp_conjL)
then obtain A where "\<forall>x\<in>f -` B \<inter> s. open (A x) \<and> x \<in> A x \<and> s \<inter> A x \<subseteq> f -` B"
unfolding bchoice_iff ..
then show "\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s"
by (intro exI[of _ "\<Union>x\<in>f -` B \<inter> s. A x"]) auto
next
assume B: "\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s)"
show "continuous_on s f"
unfolding continuous_on_topological
proof safe
fix x B assume "x \<in> s" "open B" "f x \<in> B"
with B obtain A where A: "open A" "A \<inter> s = f -` B \<inter> s" by auto
with `x \<in> s` `f x \<in> B` show "\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)"
by (intro exI[of _ A]) auto
qed
qed
lemma continuous_on_open_vimage:
"open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> open (f -` B \<inter> s))"
unfolding continuous_on_open_invariant
by (metis open_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s])
corollary continuous_imp_open_vimage:
assumes "continuous_on s f" "open s" "open B" "f -` B \<subseteq> s"
shows "open (f -` B)"
by (metis assms continuous_on_open_vimage le_iff_inf)
corollary open_vimage[continuous_intros]:
assumes "open s" and "continuous_on UNIV f"
shows "open (f -` s)"
using assms unfolding continuous_on_open_vimage [OF open_UNIV]
by simp
lemma continuous_on_closed_invariant:
"continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> (\<exists>A. closed A \<and> A \<inter> s = f -` B \<inter> s))"
proof -
have *: "\<And>P Q::'b set\<Rightarrow>bool. (\<And>A. P A \<longleftrightarrow> Q (- A)) \<Longrightarrow> (\<forall>A. P A) \<longleftrightarrow> (\<forall>A. Q A)"
by (metis double_compl)
show ?thesis
unfolding continuous_on_open_invariant by (intro *) (auto simp: open_closed[symmetric])
qed
lemma continuous_on_closed_vimage:
"closed s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> closed (f -` B \<inter> s))"
unfolding continuous_on_closed_invariant
by (metis closed_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s])
corollary closed_vimage[continuous_intros]:
assumes "closed s" and "continuous_on UNIV f"
shows "closed (f -` s)"
using assms unfolding continuous_on_closed_vimage [OF closed_UNIV]
by simp
lemma continuous_on_open_Union:
"(\<And>s. s \<in> S \<Longrightarrow> open s) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on s f) \<Longrightarrow> continuous_on (\<Union>S) f"
unfolding continuous_on_def by safe (metis open_Union at_within_open UnionI)
lemma continuous_on_open_UN:
"(\<And>s. s \<in> S \<Longrightarrow> open (A s)) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on (A s) f) \<Longrightarrow> continuous_on (\<Union>s\<in>S. A s) f"
unfolding Union_image_eq[symmetric] by (rule continuous_on_open_Union) auto
lemma continuous_on_closed_Un:
"closed s \<Longrightarrow> closed t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t f \<Longrightarrow> continuous_on (s \<union> t) f"
by (auto simp add: continuous_on_closed_vimage closed_Un Int_Un_distrib)
lemma continuous_on_If:
assumes closed: "closed s" "closed t" and cont: "continuous_on s f" "continuous_on t g"
and P: "\<And>x. x \<in> s \<Longrightarrow> \<not> P x \<Longrightarrow> f x = g x" "\<And>x. x \<in> t \<Longrightarrow> P x \<Longrightarrow> f x = g x"
shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)" (is "continuous_on _ ?h")
proof-
from P have "\<forall>x\<in>s. f x = ?h x" "\<forall>x\<in>t. g x = ?h x"
by auto
with cont have "continuous_on s ?h" "continuous_on t ?h"
by simp_all
with closed show ?thesis
by (rule continuous_on_closed_Un)
qed
lemma continuous_on_id[continuous_intros]: "continuous_on s (\<lambda>x. x)"
unfolding continuous_on_def by (fast intro: tendsto_ident_at)
lemma continuous_on_const[continuous_intros]: "continuous_on s (\<lambda>x. c)"
unfolding continuous_on_def by (auto intro: tendsto_const)
lemma continuous_on_compose[continuous_intros]:
"continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g o f)"
unfolding continuous_on_topological by simp metis
lemma continuous_on_compose2:
"continuous_on t g \<Longrightarrow> continuous_on s f \<Longrightarrow> t = f ` s \<Longrightarrow> continuous_on s (\<lambda>x. g (f x))"
using continuous_on_compose[of s f g] by (simp add: comp_def)
subsubsection {* Continuity at a point *}
definition continuous :: "'a::t2_space filter \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where
"continuous F f \<longleftrightarrow> (f ---> f (Lim F (\<lambda>x. x))) F"
lemma continuous_bot[continuous_intros, simp]: "continuous bot f"
unfolding continuous_def by auto
lemma continuous_trivial_limit: "trivial_limit net \<Longrightarrow> continuous net f"
by simp
lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f ---> f x) (at x within s)"
by (cases "trivial_limit (at x within s)") (auto simp add: Lim_ident_at continuous_def)
lemma continuous_within_topological:
"continuous (at x within s) f \<longleftrightarrow>
(\<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))"
unfolding continuous_within tendsto_def eventually_at_topological by metis
lemma continuous_within_compose[continuous_intros]:
"continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow>
continuous (at x within s) (g o f)"
by (simp add: continuous_within_topological) metis
lemma continuous_within_compose2:
"continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow>
continuous (at x within s) (\<lambda>x. g (f x))"
using continuous_within_compose[of x s f g] by (simp add: comp_def)
lemma continuous_at: "continuous (at x) f \<longleftrightarrow> f -- x --> f x"
using continuous_within[of x UNIV f] by simp
lemma continuous_ident[continuous_intros, simp]: "continuous (at x within S) (\<lambda>x. x)"
unfolding continuous_within by (rule tendsto_ident_at)
lemma continuous_const[continuous_intros, simp]: "continuous F (\<lambda>x. c)"
unfolding continuous_def by (rule tendsto_const)
lemma continuous_on_eq_continuous_within:
"continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. continuous (at x within s) f)"
unfolding continuous_on_def continuous_within ..
abbreviation isCont :: "('a::t2_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> bool" where
"isCont f a \<equiv> continuous (at a) f"
lemma isCont_def: "isCont f a \<longleftrightarrow> f -- a --> f a"
by (rule continuous_at)
lemma continuous_at_within: "isCont f x \<Longrightarrow> continuous (at x within s) f"
by (auto intro: tendsto_mono at_le simp: continuous_at continuous_within)
lemma continuous_on_eq_continuous_at: "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. isCont f x)"
by (simp add: continuous_on_def continuous_at at_within_open[of _ s])
lemma continuous_on_subset: "continuous_on s f \<Longrightarrow> t \<subseteq> s \<Longrightarrow> continuous_on t f"
unfolding continuous_on_def by (metis subset_eq tendsto_within_subset)
lemma continuous_at_imp_continuous_on: "\<forall>x\<in>s. isCont f x \<Longrightarrow> continuous_on s f"
by (auto intro: continuous_at_within simp: continuous_on_eq_continuous_within)
lemma isContI_continuous: "continuous (at x within UNIV) f \<Longrightarrow> isCont f x"
by simp
lemma isCont_ident[continuous_intros, simp]: "isCont (\<lambda>x. x) a"
using continuous_ident by (rule isContI_continuous)
lemmas isCont_const = continuous_const
lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"
unfolding isCont_def by (rule tendsto_compose)
lemma isCont_o[continuous_intros]: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (g \<circ> f) a"
unfolding o_def by (rule isCont_o2)
lemma isCont_tendsto_compose: "isCont g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
unfolding isCont_def by (rule tendsto_compose)
lemma continuous_within_compose3:
"isCont g (f x) \<Longrightarrow> continuous (at x within s) f \<Longrightarrow> continuous (at x within s) (\<lambda>x. g (f x))"
using continuous_within_compose2[of x s f g] by (simp add: continuous_at_within)
subsubsection{* Open-cover compactness *}
context topological_space
begin
definition compact :: "'a set \<Rightarrow> bool" where
compact_eq_heine_borel: -- "This name is used for backwards compatibility"
"compact S \<longleftrightarrow> (\<forall>C. (\<forall>c\<in>C. open c) \<and> S \<subseteq> \<Union>C \<longrightarrow> (\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))"
lemma compactI:
assumes "\<And>C. \<forall>t\<in>C. open t \<Longrightarrow> s \<subseteq> \<Union> C \<Longrightarrow> \<exists>C'. C' \<subseteq> C \<and> finite C' \<and> s \<subseteq> \<Union> C'"
shows "compact s"
unfolding compact_eq_heine_borel using assms by metis
lemma compact_empty[simp]: "compact {}"
by (auto intro!: compactI)
lemma compactE:
assumes "compact s" and "\<forall>t\<in>C. open t" and "s \<subseteq> \<Union>C"
obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> \<Union>C'"
using assms unfolding compact_eq_heine_borel by metis
lemma compactE_image:
assumes "compact s" and "\<forall>t\<in>C. open (f t)" and "s \<subseteq> (\<Union>c\<in>C. f c)"
obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> (\<Union>c\<in>C'. f c)"
using assms unfolding ball_simps[symmetric] SUP_def
by (metis (lifting) finite_subset_image compact_eq_heine_borel[of s])
lemma compact_inter_closed [intro]:
assumes "compact s" and "closed t"
shows "compact (s \<inter> t)"
proof (rule compactI)
fix C assume C: "\<forall>c\<in>C. open c" and cover: "s \<inter> t \<subseteq> \<Union>C"
from C `closed t` have "\<forall>c\<in>C \<union> {-t}. open c" by auto
moreover from cover have "s \<subseteq> \<Union>(C \<union> {-t})" by auto
ultimately have "\<exists>D\<subseteq>C \<union> {-t}. finite D \<and> s \<subseteq> \<Union>D"
using `compact s` unfolding compact_eq_heine_borel by auto
then obtain D where "D \<subseteq> C \<union> {- t} \<and> finite D \<and> s \<subseteq> \<Union>D" ..
then show "\<exists>D\<subseteq>C. finite D \<and> s \<inter> t \<subseteq> \<Union>D"
by (intro exI[of _ "D - {-t}"]) auto
qed
lemma inj_setminus: "inj_on uminus (A::'a set set)"
by (auto simp: inj_on_def)
lemma compact_fip:
"compact U \<longleftrightarrow>
(\<forall>A. (\<forall>a\<in>A. closed a) \<longrightarrow> (\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}) \<longrightarrow> U \<inter> \<Inter>A \<noteq> {})"
(is "_ \<longleftrightarrow> ?R")
proof (safe intro!: compact_eq_heine_borel[THEN iffD2])
fix A
assume "compact U"
and A: "\<forall>a\<in>A. closed a" "U \<inter> \<Inter>A = {}"
and fi: "\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}"
from A have "(\<forall>a\<in>uminus`A. open a) \<and> U \<subseteq> \<Union>(uminus`A)"
by auto
with `compact U` obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<subseteq> \<Union>(uminus`B)"
unfolding compact_eq_heine_borel by (metis subset_image_iff)
with fi[THEN spec, of B] show False
by (auto dest: finite_imageD intro: inj_setminus)
next
fix A
assume ?R
assume "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A"
then have "U \<inter> \<Inter>(uminus`A) = {}" "\<forall>a\<in>uminus`A. closed a"
by auto
with `?R` obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<inter> \<Inter>(uminus`B) = {}"
by (metis subset_image_iff)
then show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T"
by (auto intro!: exI[of _ B] inj_setminus dest: finite_imageD)
qed
lemma compact_imp_fip:
"compact s \<Longrightarrow> \<forall>t \<in> f. closed t \<Longrightarrow> \<forall>f'. finite f' \<and> f' \<subseteq> f \<longrightarrow> (s \<inter> (\<Inter> f') \<noteq> {}) \<Longrightarrow>
s \<inter> (\<Inter> f) \<noteq> {}"
unfolding compact_fip by auto
lemma compact_imp_fip_image:
assumes "compact s"
and P: "\<And>i. i \<in> I \<Longrightarrow> closed (f i)"
and Q: "\<And>I'. finite I' \<Longrightarrow> I' \<subseteq> I \<Longrightarrow> (s \<inter> (\<Inter>i\<in>I'. f i) \<noteq> {})"
shows "s \<inter> (\<Inter>i\<in>I. f i) \<noteq> {}"
proof -
note `compact s`
moreover from P have "\<forall>i \<in> f ` I. closed i" by blast
moreover have "\<forall>A. finite A \<and> A \<subseteq> f ` I \<longrightarrow> (s \<inter> (\<Inter>A) \<noteq> {})"
proof (rule, rule, erule conjE)
fix A :: "'a set set"
assume "finite A"
moreover assume "A \<subseteq> f ` I"
ultimately obtain B where "B \<subseteq> I" and "finite B" and "A = f ` B"
using finite_subset_image [of A f I] by blast
with Q [of B] show "s \<inter> \<Inter>A \<noteq> {}" by simp
qed
ultimately have "s \<inter> (\<Inter>(f ` I)) \<noteq> {}" by (rule compact_imp_fip)
then show ?thesis by simp
qed
end
lemma (in t2_space) compact_imp_closed:
assumes "compact s" shows "closed s"
unfolding closed_def
proof (rule openI)
fix y assume "y \<in> - s"
let ?C = "\<Union>x\<in>s. {u. open u \<and> x \<in> u \<and> eventually (\<lambda>y. y \<notin> u) (nhds y)}"
note `compact s`
moreover have "\<forall>u\<in>?C. open u" by simp
moreover have "s \<subseteq> \<Union>?C"
proof
fix x assume "x \<in> s"
with `y \<in> - s` have "x \<noteq> y" by clarsimp
hence "\<exists>u v. open u \<and> open v \<and> x \<in> u \<and> y \<in> v \<and> u \<inter> v = {}"
by (rule hausdorff)
with `x \<in> s` show "x \<in> \<Union>?C"
unfolding eventually_nhds by auto
qed
ultimately obtain D where "D \<subseteq> ?C" and "finite D" and "s \<subseteq> \<Union>D"
by (rule compactE)
from `D \<subseteq> ?C` have "\<forall>x\<in>D. eventually (\<lambda>y. y \<notin> x) (nhds y)" by auto
with `finite D` have "eventually (\<lambda>y. y \<notin> \<Union>D) (nhds y)"
by (simp add: eventually_Ball_finite)
with `s \<subseteq> \<Union>D` have "eventually (\<lambda>y. y \<notin> s) (nhds y)"
by (auto elim!: eventually_mono [rotated])
thus "\<exists>t. open t \<and> y \<in> t \<and> t \<subseteq> - s"
by (simp add: eventually_nhds subset_eq)
qed
lemma compact_continuous_image:
assumes f: "continuous_on s f" and s: "compact s"
shows "compact (f ` s)"
proof (rule compactI)
fix C assume "\<forall>c\<in>C. open c" and cover: "f`s \<subseteq> \<Union>C"
with f have "\<forall>c\<in>C. \<exists>A. open A \<and> A \<inter> s = f -` c \<inter> s"
unfolding continuous_on_open_invariant by blast
then obtain A where A: "\<forall>c\<in>C. open (A c) \<and> A c \<inter> s = f -` c \<inter> s"
unfolding bchoice_iff ..
with cover have "\<forall>c\<in>C. open (A c)" "s \<subseteq> (\<Union>c\<in>C. A c)"
by (fastforce simp add: subset_eq set_eq_iff)+
from compactE_image[OF s this] obtain D where "D \<subseteq> C" "finite D" "s \<subseteq> (\<Union>c\<in>D. A c)" .
with A show "\<exists>D \<subseteq> C. finite D \<and> f`s \<subseteq> \<Union>D"
by (intro exI[of _ D]) (fastforce simp add: subset_eq set_eq_iff)+
qed
lemma continuous_on_inv:
fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
assumes "continuous_on s f" "compact s" "\<forall>x\<in>s. g (f x) = x"
shows "continuous_on (f ` s) g"
unfolding continuous_on_topological
proof (clarsimp simp add: assms(3))
fix x :: 'a and B :: "'a set"
assume "x \<in> s" and "open B" and "x \<in> B"
have 1: "\<forall>x\<in>s. f x \<in> f ` (s - B) \<longleftrightarrow> x \<in> s - B"
using assms(3) by (auto, metis)
have "continuous_on (s - B) f"
using `continuous_on s f` Diff_subset
by (rule continuous_on_subset)
moreover have "compact (s - B)"
using `open B` and `compact s`
unfolding Diff_eq by (intro compact_inter_closed closed_Compl)
ultimately have "compact (f ` (s - B))"
by (rule compact_continuous_image)
hence "closed (f ` (s - B))"
by (rule compact_imp_closed)
hence "open (- f ` (s - B))"
by (rule open_Compl)
moreover have "f x \<in> - f ` (s - B)"
using `x \<in> s` and `x \<in> B` by (simp add: 1)
moreover have "\<forall>y\<in>s. f y \<in> - f ` (s - B) \<longrightarrow> y \<in> B"
by (simp add: 1)
ultimately show "\<exists>A. open A \<and> f x \<in> A \<and> (\<forall>y\<in>s. f y \<in> A \<longrightarrow> y \<in> B)"
by fast
qed
lemma continuous_on_inv_into:
fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
assumes s: "continuous_on s f" "compact s" and f: "inj_on f s"
shows "continuous_on (f ` s) (the_inv_into s f)"
by (rule continuous_on_inv[OF s]) (auto simp: the_inv_into_f_f[OF f])
lemma (in linorder_topology) compact_attains_sup:
assumes "compact S" "S \<noteq> {}"
shows "\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s"
proof (rule classical)
assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s)"
then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. s < t s"
by (metis not_le)
then have "\<forall>s\<in>S. open {..< t s}" "S \<subseteq> (\<Union>s\<in>S. {..< t s})"
by auto
with `compact S` obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {..< t s})"
by (erule compactE_image)
with `S \<noteq> {}` have Max: "Max (t`C) \<in> t`C" and "\<forall>s\<in>t`C. s \<le> Max (t`C)"
by (auto intro!: Max_in)
with C have "S \<subseteq> {..< Max (t`C)}"
by (auto intro: less_le_trans simp: subset_eq)
with t Max `C \<subseteq> S` show ?thesis
by fastforce
qed
lemma (in linorder_topology) compact_attains_inf:
assumes "compact S" "S \<noteq> {}"
shows "\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t"
proof (rule classical)
assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t)"
then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. t s < s"
by (metis not_le)
then have "\<forall>s\<in>S. open {t s <..}" "S \<subseteq> (\<Union>s\<in>S. {t s <..})"
by auto
with `compact S` obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {t s <..})"
by (erule compactE_image)
with `S \<noteq> {}` have Min: "Min (t`C) \<in> t`C" and "\<forall>s\<in>t`C. Min (t`C) \<le> s"
by (auto intro!: Min_in)
with C have "S \<subseteq> {Min (t`C) <..}"
by (auto intro: le_less_trans simp: subset_eq)
with t Min `C \<subseteq> S` show ?thesis
by fastforce
qed
lemma continuous_attains_sup:
fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology"
shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s. f y \<le> f x)"
using compact_attains_sup[of "f ` s"] compact_continuous_image[of s f] by auto
lemma continuous_attains_inf:
fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology"
shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s. f x \<le> f y)"
using compact_attains_inf[of "f ` s"] compact_continuous_image[of s f] by auto
subsection {* Connectedness *}
context topological_space
begin
definition "connected S \<longleftrightarrow>
\<not> (\<exists>A B. open A \<and> open B \<and> S \<subseteq> A \<union> B \<and> A \<inter> B \<inter> S = {} \<and> A \<inter> S \<noteq> {} \<and> B \<inter> S \<noteq> {})"
lemma connectedI:
"(\<And>A B. open A \<Longrightarrow> open B \<Longrightarrow> A \<inter> U \<noteq> {} \<Longrightarrow> B \<inter> U \<noteq> {} \<Longrightarrow> A \<inter> B \<inter> U = {} \<Longrightarrow> U \<subseteq> A \<union> B \<Longrightarrow> False)
\<Longrightarrow> connected U"
by (auto simp: connected_def)
lemma connected_empty[simp]: "connected {}"
by (auto intro!: connectedI)
lemma connectedD:
"connected A \<Longrightarrow> open U \<Longrightarrow> open V \<Longrightarrow> U \<inter> V \<inter> A = {} \<Longrightarrow> A \<subseteq> U \<union> V \<Longrightarrow> U \<inter> A = {} \<or> V \<inter> A = {}"
by (auto simp: connected_def)
end
lemma connected_local_const:
assumes "connected A" "a \<in> A" "b \<in> A"
assumes *: "\<forall>a\<in>A. eventually (\<lambda>b. f a = f b) (at a within A)"
shows "f a = f b"
proof -
obtain S where S: "\<And>a. a \<in> A \<Longrightarrow> a \<in> S a" "\<And>a. a \<in> A \<Longrightarrow> open (S a)"
"\<And>a x. a \<in> A \<Longrightarrow> x \<in> S a \<Longrightarrow> x \<in> A \<Longrightarrow> f a = f x"
using * unfolding eventually_at_topological by metis
let ?P = "\<Union>b\<in>{b\<in>A. f a = f b}. S b" and ?N = "\<Union>b\<in>{b\<in>A. f a \<noteq> f b}. S b"
have "?P \<inter> A = {} \<or> ?N \<inter> A = {}"
using `connected A` S `a\<in>A`
by (intro connectedD) (auto, metis)
then show "f a = f b"
proof
assume "?N \<inter> A = {}"
then have "\<forall>x\<in>A. f a = f x"
using S(1) by auto
with `b\<in>A` show ?thesis by auto
next
assume "?P \<inter> A = {}" then show ?thesis
using `a \<in> A` S(1)[of a] by auto
qed
qed
lemma (in linorder_topology) connectedD_interval:
assumes "connected U" and xy: "x \<in> U" "y \<in> U" and "x \<le> z" "z \<le> y"
shows "z \<in> U"
proof -
have eq: "{..<z} \<union> {z<..} = - {z}"
by auto
{ assume "z \<notin> U" "x < z" "z < y"
with xy have "\<not> connected U"
unfolding connected_def simp_thms
apply (rule_tac exI[of _ "{..< z}"])
apply (rule_tac exI[of _ "{z <..}"])
apply (auto simp add: eq)
done }
with assms show "z \<in> U"
by (metis less_le)
qed
lemma connected_continuous_image:
assumes *: "continuous_on s f"
assumes "connected s"
shows "connected (f ` s)"
proof (rule connectedI)
fix A B assume A: "open A" "A \<inter> f ` s \<noteq> {}" and B: "open B" "B \<inter> f ` s \<noteq> {}" and
AB: "A \<inter> B \<inter> f ` s = {}" "f ` s \<subseteq> A \<union> B"
obtain A' where A': "open A'" "f -` A \<inter> s = A' \<inter> s"
using * `open A` unfolding continuous_on_open_invariant by metis
obtain B' where B': "open B'" "f -` B \<inter> s = B' \<inter> s"
using * `open B` unfolding continuous_on_open_invariant by metis
have "\<exists>A B. open A \<and> open B \<and> s \<subseteq> A \<union> B \<and> A \<inter> B \<inter> s = {} \<and> A \<inter> s \<noteq> {} \<and> B \<inter> s \<noteq> {}"
proof (rule exI[of _ A'], rule exI[of _ B'], intro conjI)
have "s \<subseteq> (f -` A \<inter> s) \<union> (f -` B \<inter> s)" using AB by auto
then show "s \<subseteq> A' \<union> B'" using A' B' by auto
next
have "(f -` A \<inter> s) \<inter> (f -` B \<inter> s) = {}" using AB by auto
then show "A' \<inter> B' \<inter> s = {}" using A' B' by auto
qed (insert A' B' A B, auto)
with `connected s` show False
unfolding connected_def by blast
qed
section {* Connectedness *}
class linear_continuum_topology = linorder_topology + linear_continuum
begin
lemma Inf_notin_open:
assumes A: "open A" and bnd: "\<forall>a\<in>A. x < a"
shows "Inf A \<notin> A"
proof
assume "Inf A \<in> A"
then obtain b where "b < Inf A" "{b <.. Inf A} \<subseteq> A"
using open_left[of A "Inf A" x] assms by auto
with dense[of b "Inf A"] obtain c where "c < Inf A" "c \<in> A"
by (auto simp: subset_eq)
then show False
using cInf_lower[OF `c \<in> A`] bnd by (metis not_le less_imp_le bdd_belowI)
qed
lemma Sup_notin_open:
assumes A: "open A" and bnd: "\<forall>a\<in>A. a < x"
shows "Sup A \<notin> A"
proof
assume "Sup A \<in> A"
then obtain b where "Sup A < b" "{Sup A ..< b} \<subseteq> A"
using open_right[of A "Sup A" x] assms by auto
with dense[of "Sup A" b] obtain c where "Sup A < c" "c \<in> A"
by (auto simp: subset_eq)
then show False
using cSup_upper[OF `c \<in> A`] bnd by (metis less_imp_le not_le bdd_aboveI)
qed
end
instance linear_continuum_topology \<subseteq> perfect_space
proof
fix x :: 'a
obtain y where "x < y \<or> y < x"
using ex_gt_or_lt [of x] ..
with Inf_notin_open[of "{x}" y] Sup_notin_open[of "{x}" y]
show "\<not> open {x}"
by auto
qed
lemma connectedI_interval:
fixes U :: "'a :: linear_continuum_topology set"
assumes *: "\<And>x y z. x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x \<le> z \<Longrightarrow> z \<le> y \<Longrightarrow> z \<in> U"
shows "connected U"
proof (rule connectedI)
{ fix A B assume "open A" "open B" "A \<inter> B \<inter> U = {}" "U \<subseteq> A \<union> B"
fix x y assume "x < y" "x \<in> A" "y \<in> B" "x \<in> U" "y \<in> U"
let ?z = "Inf (B \<inter> {x <..})"
have "x \<le> ?z" "?z \<le> y"
using `y \<in> B` `x < y` by (auto intro: cInf_lower cInf_greatest)
with `x \<in> U` `y \<in> U` have "?z \<in> U"
by (rule *)
moreover have "?z \<notin> B \<inter> {x <..}"
using `open B` by (intro Inf_notin_open) auto
ultimately have "?z \<in> A"
using `x \<le> ?z` `A \<inter> B \<inter> U = {}` `x \<in> A` `U \<subseteq> A \<union> B` by auto
{ assume "?z < y"
obtain a where "?z < a" "{?z ..< a} \<subseteq> A"
using open_right[OF `open A` `?z \<in> A` `?z < y`] by auto
moreover obtain b where "b \<in> B" "x < b" "b < min a y"
using cInf_less_iff[of "B \<inter> {x <..}" "min a y"] `?z < a` `?z < y` `x < y` `y \<in> B`
by (auto intro: less_imp_le)
moreover have "?z \<le> b"
using `b \<in> B` `x < b`
by (intro cInf_lower) auto
moreover have "b \<in> U"
using `x \<le> ?z` `?z \<le> b` `b < min a y`
by (intro *[OF `x \<in> U` `y \<in> U`]) (auto simp: less_imp_le)
ultimately have "\<exists>b\<in>B. b \<in> A \<and> b \<in> U"
by (intro bexI[of _ b]) auto }
then have False
using `?z \<le> y` `?z \<in> A` `y \<in> B` `y \<in> U` `A \<inter> B \<inter> U = {}` unfolding le_less by blast }
note not_disjoint = this
fix A B assume AB: "open A" "open B" "U \<subseteq> A \<union> B" "A \<inter> B \<inter> U = {}"
moreover assume "A \<inter> U \<noteq> {}" then obtain x where x: "x \<in> U" "x \<in> A" by auto
moreover assume "B \<inter> U \<noteq> {}" then obtain y where y: "y \<in> U" "y \<in> B" by auto
moreover note not_disjoint[of B A y x] not_disjoint[of A B x y]
ultimately show False by (cases x y rule: linorder_cases) auto
qed
lemma connected_iff_interval:
fixes U :: "'a :: linear_continuum_topology set"
shows "connected U \<longleftrightarrow> (\<forall>x\<in>U. \<forall>y\<in>U. \<forall>z. x \<le> z \<longrightarrow> z \<le> y \<longrightarrow> z \<in> U)"
by (auto intro: connectedI_interval dest: connectedD_interval)
lemma connected_UNIV[simp]: "connected (UNIV::'a::linear_continuum_topology set)"
unfolding connected_iff_interval by auto
lemma connected_Ioi[simp]: "connected {a::'a::linear_continuum_topology <..}"
unfolding connected_iff_interval by auto
lemma connected_Ici[simp]: "connected {a::'a::linear_continuum_topology ..}"
unfolding connected_iff_interval by auto
lemma connected_Iio[simp]: "connected {..< a::'a::linear_continuum_topology}"
unfolding connected_iff_interval by auto
lemma connected_Iic[simp]: "connected {.. a::'a::linear_continuum_topology}"
unfolding connected_iff_interval by auto
lemma connected_Ioo[simp]: "connected {a <..< b::'a::linear_continuum_topology}"
unfolding connected_iff_interval by auto
lemma connected_Ioc[simp]: "connected {a <.. b::'a::linear_continuum_topology}"
unfolding connected_iff_interval by auto
lemma connected_Ico[simp]: "connected {a ..< b::'a::linear_continuum_topology}"
unfolding connected_iff_interval by auto
lemma connected_Icc[simp]: "connected {a .. b::'a::linear_continuum_topology}"
unfolding connected_iff_interval by auto
lemma connected_contains_Ioo:
fixes A :: "'a :: linorder_topology set"
assumes A: "connected A" "a \<in> A" "b \<in> A" shows "{a <..< b} \<subseteq> A"
using connectedD_interval[OF A] by (simp add: subset_eq Ball_def less_imp_le)
subsection {* Intermediate Value Theorem *}
lemma IVT':
fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
assumes y: "f a \<le> y" "y \<le> f b" "a \<le> b"
assumes *: "continuous_on {a .. b} f"
shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
proof -
have "connected {a..b}"
unfolding connected_iff_interval by auto
from connected_continuous_image[OF * this, THEN connectedD_interval, of "f a" "f b" y] y
show ?thesis
by (auto simp add: atLeastAtMost_def atLeast_def atMost_def)
qed
lemma IVT2':
fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
assumes y: "f b \<le> y" "y \<le> f a" "a \<le> b"
assumes *: "continuous_on {a .. b} f"
shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
proof -
have "connected {a..b}"
unfolding connected_iff_interval by auto
from connected_continuous_image[OF * this, THEN connectedD_interval, of "f b" "f a" y] y
show ?thesis
by (auto simp add: atLeastAtMost_def atLeast_def atMost_def)
qed
lemma IVT:
fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
shows "f a \<le> y \<Longrightarrow> y \<le> f b \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
by (rule IVT') (auto intro: continuous_at_imp_continuous_on)
lemma IVT2:
fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
shows "f b \<le> y \<Longrightarrow> y \<le> f a \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
by (rule IVT2') (auto intro: continuous_at_imp_continuous_on)
lemma continuous_inj_imp_mono:
fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
assumes x: "a < x" "x < b"
assumes cont: "continuous_on {a..b} f"
assumes inj: "inj_on f {a..b}"
shows "(f a < f x \<and> f x < f b) \<or> (f b < f x \<and> f x < f a)"
proof -
note I = inj_on_iff[OF inj]
{ assume "f x < f a" "f x < f b"
then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f x < f s"
using IVT'[of f x "min (f a) (f b)" b] IVT2'[of f x "min (f a) (f b)" a] x
by (auto simp: continuous_on_subset[OF cont] less_imp_le)
with x I have False by auto }
moreover
{ assume "f a < f x" "f b < f x"
then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f s < f x"
using IVT'[of f a "max (f a) (f b)" x] IVT2'[of f b "max (f a) (f b)" x] x
by (auto simp: continuous_on_subset[OF cont] less_imp_le)
with x I have False by auto }
ultimately show ?thesis
using I[of a x] I[of x b] x less_trans[OF x] by (auto simp add: le_less less_imp_neq neq_iff)
qed
subsection {* Setup @{typ "'a filter"} for lifting and transfer *}
context begin interpretation lifting_syntax .
definition rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool"
where "rel_filter R F G = ((R ===> op =) ===> op =) (Rep_filter F) (Rep_filter G)"
lemma rel_filter_eventually:
"rel_filter R F G \<longleftrightarrow>
((R ===> op =) ===> op =) (\<lambda>P. eventually P F) (\<lambda>P. eventually P G)"
by(simp add: rel_filter_def eventually_def)
lemma filtermap_id [simp, id_simps]: "filtermap id = id"
by(simp add: fun_eq_iff id_def filtermap_ident)
lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)"
using filtermap_id unfolding id_def .
lemma Quotient_filter [quot_map]:
assumes Q: "Quotient R Abs Rep T"
shows "Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)"
unfolding Quotient_alt_def
proof(intro conjI strip)
from Q have *: "\<And>x y. T x y \<Longrightarrow> Abs x = y"
unfolding Quotient_alt_def by blast
fix F G
assume "rel_filter T F G"
thus "filtermap Abs F = G" unfolding filter_eq_iff
by(auto simp add: eventually_filtermap rel_filter_eventually * rel_funI del: iffI elim!: rel_funD)
next
from Q have *: "\<And>x. T (Rep x) x" unfolding Quotient_alt_def by blast
fix F
show "rel_filter T (filtermap Rep F) F"
by(auto elim: rel_funD intro: * intro!: ext arg_cong[where f="\<lambda>P. eventually P F"] rel_funI
del: iffI simp add: eventually_filtermap rel_filter_eventually)
qed(auto simp add: map_fun_def o_def eventually_filtermap filter_eq_iff fun_eq_iff rel_filter_eventually
fun_quotient[OF fun_quotient[OF Q identity_quotient] identity_quotient, unfolded Quotient_alt_def])
lemma eventually_parametric [transfer_rule]:
"((A ===> op =) ===> rel_filter A ===> op =) eventually eventually"
by(simp add: rel_fun_def rel_filter_eventually)
lemma rel_filter_eq [relator_eq]: "rel_filter op = = op ="
by(auto simp add: rel_filter_eventually rel_fun_eq fun_eq_iff filter_eq_iff)
lemma rel_filter_mono [relator_mono]:
"A \<le> B \<Longrightarrow> rel_filter A \<le> rel_filter B"
unfolding rel_filter_eventually[abs_def]
by(rule le_funI)+(intro fun_mono fun_mono[THEN le_funD, THEN le_funD] order.refl)
lemma rel_filter_conversep [simp]: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>"
by(auto simp add: rel_filter_eventually fun_eq_iff rel_fun_def)
lemma is_filter_parametric_aux:
assumes "is_filter F"
assumes [transfer_rule]: "bi_total A" "bi_unique A"
and [transfer_rule]: "((A ===> op =) ===> op =) F G"
shows "is_filter G"
proof -
interpret is_filter F by fact
show ?thesis
proof
have "F (\<lambda>_. True) = G (\<lambda>x. True)" by transfer_prover
thus "G (\<lambda>x. True)" by(simp add: True)
next
fix P' Q'
assume "G P'" "G Q'"
moreover
from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def]
obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast
have "F P = G P'" "F Q = G Q'" by transfer_prover+
ultimately have "F (\<lambda>x. P x \<and> Q x)" by(simp add: conj)
moreover have "F (\<lambda>x. P x \<and> Q x) = G (\<lambda>x. P' x \<and> Q' x)" by transfer_prover
ultimately show "G (\<lambda>x. P' x \<and> Q' x)" by simp
next
fix P' Q'
assume "\<forall>x. P' x \<longrightarrow> Q' x" "G P'"
moreover
from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def]
obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast
have "F P = G P'" by transfer_prover
moreover have "(\<forall>x. P x \<longrightarrow> Q x) \<longleftrightarrow> (\<forall>x. P' x \<longrightarrow> Q' x)" by transfer_prover
ultimately have "F Q" by(simp add: mono)
moreover have "F Q = G Q'" by transfer_prover
ultimately show "G Q'" by simp
qed
qed
lemma is_filter_parametric [transfer_rule]:
"\<lbrakk> bi_total A; bi_unique A \<rbrakk>
\<Longrightarrow> (((A ===> op =) ===> op =) ===> op =) is_filter is_filter"
apply(rule rel_funI)
apply(rule iffI)
apply(erule (3) is_filter_parametric_aux)
apply(erule is_filter_parametric_aux[where A="conversep A"])
apply(auto simp add: rel_fun_def)
done
lemma left_total_rel_filter [transfer_rule]:
assumes [transfer_rule]: "bi_total A" "bi_unique A"
shows "left_total (rel_filter A)"
proof(rule left_totalI)
fix F :: "'a filter"
from bi_total_fun[OF bi_unique_fun[OF `bi_total A` bi_unique_eq] bi_total_eq]
obtain G where [transfer_rule]: "((A ===> op =) ===> op =) (\<lambda>P. eventually P F) G"
unfolding bi_total_def by blast
moreover have "is_filter (\<lambda>P. eventually P F) \<longleftrightarrow> is_filter G" by transfer_prover
hence "is_filter G" by(simp add: eventually_def is_filter_Rep_filter)
ultimately have "rel_filter A F (Abs_filter G)"
by(simp add: rel_filter_eventually eventually_Abs_filter)
thus "\<exists>G. rel_filter A F G" ..
qed
lemma right_total_rel_filter [transfer_rule]:
"\<lbrakk> bi_total A; bi_unique A \<rbrakk> \<Longrightarrow> right_total (rel_filter A)"
using left_total_rel_filter[of "A\<inverse>\<inverse>"] by simp
lemma bi_total_rel_filter [transfer_rule]:
assumes "bi_total A" "bi_unique A"
shows "bi_total (rel_filter A)"
unfolding bi_total_alt_def using assms
by(simp add: left_total_rel_filter right_total_rel_filter)
lemma left_unique_rel_filter [transfer_rule]:
assumes "left_unique A"
shows "left_unique (rel_filter A)"
proof(rule left_uniqueI)
fix F F' G
assume [transfer_rule]: "rel_filter A F G" "rel_filter A F' G"
show "F = F'"
unfolding filter_eq_iff
proof
fix P :: "'a \<Rightarrow> bool"
obtain P' where [transfer_rule]: "(A ===> op =) P P'"
using left_total_fun[OF assms left_total_eq] unfolding left_total_def by blast
have "eventually P F = eventually P' G"
and "eventually P F' = eventually P' G" by transfer_prover+
thus "eventually P F = eventually P F'" by simp
qed
qed
lemma right_unique_rel_filter [transfer_rule]:
"right_unique A \<Longrightarrow> right_unique (rel_filter A)"
using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by simp
lemma bi_unique_rel_filter [transfer_rule]:
"bi_unique A \<Longrightarrow> bi_unique (rel_filter A)"
by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter)
lemma top_filter_parametric [transfer_rule]:
"bi_total A \<Longrightarrow> (rel_filter A) top top"
by(simp add: rel_filter_eventually All_transfer)
lemma bot_filter_parametric [transfer_rule]: "(rel_filter A) bot bot"
by(simp add: rel_filter_eventually rel_fun_def)
lemma sup_filter_parametric [transfer_rule]:
"(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup"
by(fastforce simp add: rel_filter_eventually[abs_def] eventually_sup dest: rel_funD)
lemma Sup_filter_parametric [transfer_rule]:
"(rel_set (rel_filter A) ===> rel_filter A) Sup Sup"
proof(rule rel_funI)
fix S T
assume [transfer_rule]: "rel_set (rel_filter A) S T"
show "rel_filter A (Sup S) (Sup T)"
by(simp add: rel_filter_eventually eventually_Sup) transfer_prover
qed
lemma principal_parametric [transfer_rule]:
"(rel_set A ===> rel_filter A) principal principal"
proof(rule rel_funI)
fix S S'
assume [transfer_rule]: "rel_set A S S'"
show "rel_filter A (principal S) (principal S')"
by(simp add: rel_filter_eventually eventually_principal) transfer_prover
qed
context
fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
assumes [transfer_rule]: "bi_unique A"
begin
lemma le_filter_parametric [transfer_rule]:
"(rel_filter A ===> rel_filter A ===> op =) op \<le> op \<le>"
unfolding le_filter_def[abs_def] by transfer_prover
lemma less_filter_parametric [transfer_rule]:
"(rel_filter A ===> rel_filter A ===> op =) op < op <"
unfolding less_filter_def[abs_def] by transfer_prover
context
assumes [transfer_rule]: "bi_total A"
begin
lemma Inf_filter_parametric [transfer_rule]:
"(rel_set (rel_filter A) ===> rel_filter A) Inf Inf"
unfolding Inf_filter_def[abs_def] by transfer_prover
lemma inf_filter_parametric [transfer_rule]:
"(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf"
proof(intro rel_funI)+
fix F F' G G'
assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'"
have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
thus "rel_filter A (inf F G) (inf F' G')" by simp
qed
end
end
end
end