(* Title: HOL/Relation_Power.thy
Author: Tobias Nipkow
Copyright 1996 TU Muenchen
*)
header{*Powers of Relations and Functions*}
theory Relation_Power
imports Power Transitive_Closure Plain
begin
consts funpower :: "('a \<Rightarrow> 'b) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'b" (infixr "^^" 80)
overloading
relpow \<equiv> "funpower \<Colon> ('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> ('a \<times> 'a) set"
begin
text {* @{text "R ^^ n = R O ... O R"}, the n-fold composition of @{text R} *}
primrec relpow where
"(R \<Colon> ('a \<times> 'a) set) ^^ 0 = Id"
| "(R \<Colon> ('a \<times> 'a) set) ^^ Suc n = R O (R ^^ n)"
end
overloading
funpow \<equiv> "funpower \<Colon> ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
begin
text {* @{text "f ^^ n = f o ... o f"}, the n-fold composition of @{text f} *}
primrec funpow where
"(f \<Colon> 'a \<Rightarrow> 'a) ^^ 0 = id"
| "(f \<Colon> 'a \<Rightarrow> 'a) ^^ Suc n = f o (f ^^ n)"
end
primrec fun_pow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
"fun_pow 0 f = id"
| "fun_pow (Suc n) f = f o fun_pow n f"
lemma funpow_fun_pow [code unfold]:
"f ^^ n = fun_pow n f"
unfolding funpow_def fun_pow_def ..
lemma funpow_add:
"f ^^ (m + n) = f ^^ m o f ^^ n"
by (induct m) simp_all
lemma funpow_swap1:
"f ((f ^^ n) x) = (f ^^ n) (f x)"
proof -
have "f ((f ^^ n) x) = (f ^^ (n+1)) x" unfolding One_nat_def by simp
also have "\<dots> = (f ^^ n o f ^^ 1) x" by (simp only: funpow_add)
also have "\<dots> = (f ^^ n) (f x)" unfolding One_nat_def by simp
finally show ?thesis .
qed
lemma rel_pow_1 [simp]:
fixes R :: "('a * 'a) set"
shows "R ^^ 1 = R"
by simp
lemma rel_pow_0_I:
"(x, x) \<in> R ^^ 0"
by simp
lemma rel_pow_Suc_I:
"(x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, z) \<in> R ^^ Suc n"
by auto
lemma rel_pow_Suc_I2:
"(x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> (x, z) \<in> R ^^ Suc n"
by (induct n arbitrary: z) (simp, fastsimp)
lemma rel_pow_0_E:
"(x, y) \<in> R ^^ 0 \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P"
by simp
lemma rel_pow_Suc_E:
"(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P"
by auto
lemma rel_pow_E:
"(x, z) \<in> R ^^ n \<Longrightarrow> (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P)
\<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R ^^ m \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P)
\<Longrightarrow> P"
by (cases n) auto
lemma rel_pow_Suc_D2:
"(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<exists>y. (x, y) \<in> R \<and> (y, z) \<in> R ^^ n)"
apply (induct n arbitrary: x z)
apply (blast intro: rel_pow_0_I elim: rel_pow_0_E rel_pow_Suc_E)
apply (blast intro: rel_pow_Suc_I elim: rel_pow_0_E rel_pow_Suc_E)
done
lemma rel_pow_Suc_D2':
"\<forall>x y z. (x, y) \<in> R ^^ n \<and> (y, z) \<in> R \<longrightarrow> (\<exists>w. (x, w) \<in> R \<and> (w, z) \<in> R ^^ n)"
by (induct n) (simp_all, blast)
lemma rel_pow_E2:
"(x, z) \<in> R ^^ n \<Longrightarrow> (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P)
\<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ m \<Longrightarrow> P)
\<Longrightarrow> P"
apply (cases n, simp)
apply (cut_tac n=nat and R=R in rel_pow_Suc_D2', simp, blast)
done
lemma rtrancl_imp_UN_rel_pow:
"p \<in> R^* \<Longrightarrow> p \<in> (\<Union>n. R ^^ n)"
apply (cases p) apply (simp only:)
apply (erule rtrancl_induct)
apply (blast intro: rel_pow_0_I rel_pow_Suc_I)+
done
lemma rel_pow_imp_rtrancl:
"p \<in> R ^^ n \<Longrightarrow> p \<in> R^*"
apply (induct n arbitrary: p)
apply (simp_all only: split_tupled_all)
apply (blast intro: rtrancl_refl elim: rel_pow_0_E)
apply (blast elim: rel_pow_Suc_E intro: rtrancl_into_rtrancl)
done
lemma rtrancl_is_UN_rel_pow:
"R^* = (UN n. R ^^ n)"
by (blast intro: rtrancl_imp_UN_rel_pow rel_pow_imp_rtrancl)
lemma trancl_power:
"x \<in> r^+ = (\<exists>n > 0. x \<in> r ^^ n)"
apply (cases x)
apply simp
apply (rule iffI)
apply (drule tranclD2)
apply (clarsimp simp: rtrancl_is_UN_rel_pow)
apply (rule_tac x="Suc x" in exI)
apply (clarsimp simp: rel_comp_def)
apply fastsimp
apply clarsimp
apply (case_tac n, simp)
apply clarsimp
apply (drule rel_pow_imp_rtrancl)
apply fastsimp
done
lemma single_valued_rel_pow:
fixes R :: "('a * 'a) set"
shows "single_valued R \<Longrightarrow> single_valued (R ^^ n)"
apply (induct n arbitrary: R)
apply simp_all
apply (rule single_valuedI)
apply (fast dest: single_valuedD elim: rel_pow_Suc_E)
done
end