(* Title: HOL/Library/Pure_term.thy
ID: $Id$
Author: Florian Haftmann, TU Muenchen
*)
header {* Embedding (a subset of) the Pure term algebra in HOL *}
theory Pure_term
imports MLString
begin
subsection {* Definitions *}
types vname = ml_string;
types "class" = ml_string;
types sort = "class list"
datatype "typ" =
Type ml_string "typ list" (infix "{\<struct>}" 120)
| TFix vname sort (infix "\<Colon>\<epsilon>" 117)
abbreviation
Fun :: "typ \<Rightarrow> typ \<Rightarrow> typ" (infixr "\<rightarrow>" 115) where
"ty1 \<rightarrow> ty2 \<equiv> Type (STR ''fun'') [ty1, ty2]"
abbreviation
Funs :: "typ list \<Rightarrow> typ \<Rightarrow> typ" (infixr "{\<rightarrow>}" 115) where
"tys {\<rightarrow>} ty \<equiv> foldr (op \<rightarrow>) tys ty"
datatype "term" =
Const ml_string "typ" (infix "\<Colon>\<subseteq>" 112)
| Fix vname "typ" (infix ":\<epsilon>" 112)
| App "term" "term" (infixl "\<bullet>" 110)
| Abs "vname \<times> typ" "term" (infixr "\<mapsto>" 111)
| Bnd nat
abbreviation
Apps :: "term \<Rightarrow> term list \<Rightarrow> term" (infixl "{\<bullet>}" 110) where
"t {\<bullet>} ts \<equiv> foldl (op \<bullet>) t ts"
abbreviation
Abss :: "(vname \<times> typ) list \<Rightarrow> term \<Rightarrow> term" (infixr "{\<mapsto>}" 111) where
"vs {\<mapsto>} t \<equiv> foldr (op \<mapsto>) vs t"
subsection {* ML interface *}
ML {*
structure Pure_term =
struct
val mk_sort = HOLogic.mk_list @{typ class} o map MLString.mk;
fun mk_typ f (Type (tyco, tys)) =
@{term Type} $ MLString.mk tyco
$ HOLogic.mk_list @{typ typ} (map (mk_typ f) tys)
| mk_typ f (TFree v) =
f v;
fun mk_term f g (Const (c, ty)) =
@{term Const} $ MLString.mk c $ g ty
| mk_term f g (t1 $ t2) =
@{term App} $ mk_term f g t1 $ mk_term f g t2
| mk_term f g (Free v) = f v;
end;
*}
subsection {* Code generator setup *}
lemma [code func]:
"tyco1 {\<struct>} tys1 = tyco2 {\<struct>} tys2 \<longleftrightarrow> tyco1 = tyco2
\<and> list_all2 (op =) tys1 tys2"
by (auto simp add: list_all2_eq [symmetric])
definition
Bound :: "int \<Rightarrow> term"
where
"Bound k = Bnd (nat k)"
lemma Bnd_Bound [code inline, code func]:
"Bnd n = Bound (int n)"
unfolding Bound_def by auto
definition
Absp :: "vname \<Rightarrow> typ \<Rightarrow> term \<Rightarrow> term"
where
"Absp v ty t = (v, ty) \<mapsto> t"
lemma Abs_Absp [code inline, code func]:
"(op \<mapsto>) (v, ty) = Absp v ty"
by rule (auto simp add: Absp_def)
code_datatype Const App Fix Absp Bound
lemmas [code func] = Bnd_Bound Abs_Absp
lemmas [code nofunc] = term.recs term.cases term.size
lemma [code func, code nofunc]: "(t1\<Colon>term) = t2 \<longleftrightarrow> t1 = t2" ..
code_type "typ" and "term"
(SML "Term.typ" and "Term.term")
code_const Type and TFix
(SML "Term.Type/ (_, _)" and "Term.TFree/ (_, _)")
code_const Const and App and Fix
and Absp and Bound
(SML "Term.Const/ (_, _)" and "Term.$/ (_, _)" and "Term.Free/ (_, _)"
and "Term.Abs/ (_, _, _)" and "!((_); Term.Bound/ (raise Fail \"Bound\"))")
code_reserved SML Term
end