(* Title: HOL/Library/Multiset_Order.thy
Author: Dmitriy Traytel, TU Muenchen
Author: Jasmin Blanchette, Inria, LORIA, MPII
*)
section \<open>More Theorems about the Multiset Order\<close>
theory Multiset_Order
imports Multiset
begin
subsubsection \<open>Alternative characterizations\<close>
context order
begin
lemma reflp_le: "reflp (op \<le>)"
unfolding reflp_def by simp
lemma antisymP_le: "antisymP (op \<le>)"
unfolding antisym_def by auto
lemma transp_le: "transp (op \<le>)"
unfolding transp_def by auto
lemma irreflp_less: "irreflp (op <)"
unfolding irreflp_def by simp
lemma antisymP_less: "antisymP (op <)"
unfolding antisym_def by auto
lemma transp_less: "transp (op <)"
unfolding transp_def by auto
lemmas le_trans = transp_le[unfolded transp_def, rule_format]
lemma order_mult: "class.order
(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y} \<or> M = N)
(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y})"
(is "class.order ?le ?less")
proof -
have irrefl: "\<And>M :: 'a multiset. \<not> ?less M M"
proof
fix M :: "'a multiset"
have "trans {(x'::'a, x). x' < x}"
by (rule transI) simp
moreover
assume "(M, M) \<in> mult {(x, y). x < y}"
ultimately have "\<exists>I J K. M = I + J \<and> M = I + K
\<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})"
by (rule mult_implies_one_step)
then obtain I J K where "M = I + J" and "M = I + K"
and "J \<noteq> {#}" and "(\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})" by blast
then have aux1: "K \<noteq> {#}" and aux2: "\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset K. k < j" by auto
have "finite (set_mset K)" by simp
moreover note aux2
ultimately have "set_mset K = {}"
by (induct rule: finite_induct)
(simp, metis (mono_tags) insert_absorb insert_iff insert_not_empty less_irrefl less_trans)
with aux1 show False by simp
qed
have trans: "\<And>K M N :: 'a multiset. ?less K M \<Longrightarrow> ?less M N \<Longrightarrow> ?less K N"
unfolding mult_def by (blast intro: trancl_trans)
show "class.order ?le ?less"
by standard (auto simp add: le_multiset_def irrefl dest: trans)
qed
text \<open>The Dershowitz--Manna ordering:\<close>
definition less_multiset\<^sub>D\<^sub>M where
"less_multiset\<^sub>D\<^sub>M M N \<longleftrightarrow>
(\<exists>X Y. X \<noteq> {#} \<and> X \<le># N \<and> M = (N - X) + Y \<and> (\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)))"
text \<open>The Huet--Oppen ordering:\<close>
definition less_multiset\<^sub>H\<^sub>O where
"less_multiset\<^sub>H\<^sub>O M N \<longleftrightarrow> M \<noteq> N \<and> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))"
lemma mult_imp_less_multiset\<^sub>H\<^sub>O:
"(M, N) \<in> mult {(x, y). x < y} \<Longrightarrow> less_multiset\<^sub>H\<^sub>O M N"
proof (unfold mult_def, induct rule: trancl_induct)
case (base P)
then show ?case
by (auto elim!: mult1_lessE simp add: count_eq_zero_iff less_multiset\<^sub>H\<^sub>O_def split: if_splits dest!: Suc_lessD)
next
case (step N P)
from step(3) have "M \<noteq> N" and
**: "\<And>y. count N y < count M y \<Longrightarrow> (\<exists>x>y. count M x < count N x)"
by (simp_all add: less_multiset\<^sub>H\<^sub>O_def)
from step(2) obtain M0 a K where
*: "P = M0 + {#a#}" "N = M0 + K" "a \<notin># K" "\<And>b. b \<in># K \<Longrightarrow> b < a"
by (blast elim: mult1_lessE)
from \<open>M \<noteq> N\<close> ** *(1,2,3) have "M \<noteq> P" by (force dest: *(4) split: if_splits)
moreover
{ assume "count P a \<le> count M a"
with \<open>a \<notin># K\<close> have "count N a < count M a" unfolding *(1,2)
by (auto simp add: not_in_iff)
with ** obtain z where z: "z > a" "count M z < count N z"
by blast
with * have "count N z \<le> count P z"
by (force simp add: not_in_iff)
with z have "\<exists>z > a. count M z < count P z" by auto
} note count_a = this
{ fix y
assume count_y: "count P y < count M y"
have "\<exists>x>y. count M x < count P x"
proof (cases "y = a")
case True
with count_y count_a show ?thesis by auto
next
case False
show ?thesis
proof (cases "y \<in># K")
case True
with *(4) have "y < a" by simp
then show ?thesis by (cases "count P a \<le> count M a") (auto dest: count_a intro: less_trans)
next
case False
with \<open>y \<noteq> a\<close> have "count P y = count N y" unfolding *(1,2)
by (simp add: not_in_iff)
with count_y ** obtain z where z: "z > y" "count M z < count N z" by auto
show ?thesis
proof (cases "z \<in># K")
case True
with *(4) have "z < a" by simp
with z(1) show ?thesis
by (cases "count P a \<le> count M a") (auto dest!: count_a intro: less_trans)
next
case False
with \<open>a \<notin># K\<close> have "count N z \<le> count P z" unfolding *
by (auto simp add: not_in_iff)
with z show ?thesis by auto
qed
qed
qed
}
ultimately show ?case unfolding less_multiset\<^sub>H\<^sub>O_def by blast
qed
lemma less_multiset\<^sub>D\<^sub>M_imp_mult:
"less_multiset\<^sub>D\<^sub>M M N \<Longrightarrow> (M, N) \<in> mult {(x, y). x < y}"
proof -
assume "less_multiset\<^sub>D\<^sub>M M N"
then obtain X Y where
"X \<noteq> {#}" and "X \<le># N" and "M = N - X + Y" and "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)"
unfolding less_multiset\<^sub>D\<^sub>M_def by blast
then have "(N - X + Y, N - X + X) \<in> mult {(x, y). x < y}"
by (intro one_step_implies_mult) (auto simp: Bex_def trans_def)
with \<open>M = N - X + Y\<close> \<open>X \<le># N\<close> show "(M, N) \<in> mult {(x, y). x < y}"
by (metis subset_mset.diff_add)
qed
lemma less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M: "less_multiset\<^sub>H\<^sub>O M N \<Longrightarrow> less_multiset\<^sub>D\<^sub>M M N"
unfolding less_multiset\<^sub>D\<^sub>M_def
proof (intro iffI exI conjI)
assume "less_multiset\<^sub>H\<^sub>O M N"
then obtain z where z: "count M z < count N z"
unfolding less_multiset\<^sub>H\<^sub>O_def by (auto simp: multiset_eq_iff nat_neq_iff)
define X where "X = N - M"
define Y where "Y = M - N"
from z show "X \<noteq> {#}" unfolding X_def by (auto simp: multiset_eq_iff not_less_eq_eq Suc_le_eq)
from z show "X \<le># N" unfolding X_def by auto
show "M = (N - X) + Y" unfolding X_def Y_def multiset_eq_iff count_union count_diff by force
show "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)"
proof (intro allI impI)
fix k
assume "k \<in># Y"
then have "count N k < count M k" unfolding Y_def
by (auto simp add: in_diff_count)
with \<open>less_multiset\<^sub>H\<^sub>O M N\<close> obtain a where "k < a" and "count M a < count N a"
unfolding less_multiset\<^sub>H\<^sub>O_def by blast
then show "\<exists>a. a \<in># X \<and> k < a" unfolding X_def
by (auto simp add: in_diff_count)
qed
qed
lemma mult_less_multiset\<^sub>D\<^sub>M: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>D\<^sub>M M N"
by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O)
lemma mult_less_multiset\<^sub>H\<^sub>O: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O)
lemmas mult\<^sub>D\<^sub>M = mult_less_multiset\<^sub>D\<^sub>M[unfolded less_multiset\<^sub>D\<^sub>M_def]
lemmas mult\<^sub>H\<^sub>O = mult_less_multiset\<^sub>H\<^sub>O[unfolded less_multiset\<^sub>H\<^sub>O_def]
end
context linorder
begin
lemma total_le: "total {(a :: 'a, b). a \<le> b}"
unfolding total_on_def by auto
lemma total_less: "total {(a :: 'a, b). a < b}"
unfolding total_on_def by auto
lemma linorder_mult: "class.linorder
(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y} \<or> M = N)
(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y})"
proof -
interpret o: order
"(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y} \<or> M = N)"
"(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y})"
by (rule order_mult)
show ?thesis by unfold_locales (auto 0 3 simp: mult\<^sub>H\<^sub>O not_less_iff_gr_or_eq)
qed
end
lemma less_multiset_less_multiset\<^sub>H\<^sub>O:
"M #\<subset># N \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
unfolding less_multiset_def mult\<^sub>H\<^sub>O less_multiset\<^sub>H\<^sub>O_def ..
lemmas less_multiset\<^sub>D\<^sub>M = mult\<^sub>D\<^sub>M[folded less_multiset_def]
lemmas less_multiset\<^sub>H\<^sub>O = mult\<^sub>H\<^sub>O[folded less_multiset_def]
lemma le_multiset\<^sub>H\<^sub>O:
fixes M N :: "('a :: linorder) multiset"
shows "M #\<subseteq># N \<longleftrightarrow> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))"
by (auto simp: le_multiset_def less_multiset\<^sub>H\<^sub>O)
lemma wf_less_multiset: "wf {(M :: ('a :: wellorder) multiset, N). M #\<subset># N}"
unfolding less_multiset_def by (auto intro: wf_mult wf)
lemma order_multiset: "class.order
(le_multiset :: ('a :: order) multiset \<Rightarrow> ('a :: order) multiset \<Rightarrow> bool)
(less_multiset :: ('a :: order) multiset \<Rightarrow> ('a :: order) multiset \<Rightarrow> bool)"
by unfold_locales
lemma linorder_multiset: "class.linorder
(le_multiset :: ('a :: linorder) multiset \<Rightarrow> ('a :: linorder) multiset \<Rightarrow> bool)
(less_multiset :: ('a :: linorder) multiset \<Rightarrow> ('a :: linorder) multiset \<Rightarrow> bool)"
by unfold_locales (fastforce simp add: less_multiset\<^sub>H\<^sub>O le_multiset_def not_less_iff_gr_or_eq)
interpretation multiset_linorder: linorder
"le_multiset :: ('a :: linorder) multiset \<Rightarrow> ('a :: linorder) multiset \<Rightarrow> bool"
"less_multiset :: ('a :: linorder) multiset \<Rightarrow> ('a :: linorder) multiset \<Rightarrow> bool"
by (rule linorder_multiset)
interpretation multiset_wellorder: wellorder
"le_multiset :: ('a :: wellorder) multiset \<Rightarrow> ('a :: wellorder) multiset \<Rightarrow> bool"
"less_multiset :: ('a :: wellorder) multiset \<Rightarrow> ('a :: wellorder) multiset \<Rightarrow> bool"
by unfold_locales (blast intro: wf_less_multiset [unfolded wf_def, simplified, rule_format])
lemma le_multiset_total:
fixes M N :: "('a :: linorder) multiset"
shows "\<not> M #\<subseteq># N \<Longrightarrow> N #\<subseteq># M"
by (metis multiset_linorder.le_cases)
lemma less_eq_imp_le_multiset:
fixes M N :: "('a :: linorder) multiset"
shows "M \<le># N \<Longrightarrow> M #\<subseteq># N"
unfolding le_multiset_def less_multiset\<^sub>H\<^sub>O
by (simp add: less_le_not_le subseteq_mset_def)
lemma less_multiset_right_total:
fixes M :: "('a :: linorder) multiset"
shows "M #\<subset># M + {#undefined#}"
unfolding le_multiset_def less_multiset\<^sub>H\<^sub>O by simp
lemma le_multiset_empty_left[simp]:
fixes M :: "('a :: linorder) multiset"
shows "{#} #\<subseteq># M"
by (simp add: less_eq_imp_le_multiset)
lemma le_multiset_empty_right[simp]:
fixes M :: "('a :: linorder) multiset"
shows "M \<noteq> {#} \<Longrightarrow> \<not> M #\<subseteq># {#}"
by (metis le_multiset_empty_left multiset_order.antisym)
lemma less_multiset_empty_left[simp]:
fixes M :: "('a :: linorder) multiset"
shows "M \<noteq> {#} \<Longrightarrow> {#} #\<subset># M"
by (simp add: less_multiset\<^sub>H\<^sub>O)
lemma less_multiset_empty_right[simp]:
fixes M :: "('a :: linorder) multiset"
shows "\<not> M #\<subset># {#}"
using le_empty less_multiset\<^sub>D\<^sub>M by blast
lemma
fixes M N :: "('a :: linorder) multiset"
shows
le_multiset_plus_left[simp]: "N #\<subseteq># (M + N)" and
le_multiset_plus_right[simp]: "M #\<subseteq># (M + N)"
using [[metis_verbose = false]] by (metis less_eq_imp_le_multiset mset_le_add_left add.commute)+
lemma
fixes M N :: "('a :: linorder) multiset"
shows
less_multiset_plus_plus_left_iff[simp]: "M + N #\<subset># M' + N \<longleftrightarrow> M #\<subset># M'" and
less_multiset_plus_plus_right_iff[simp]: "M + N #\<subset># M + N' \<longleftrightarrow> N #\<subset># N'"
unfolding less_multiset\<^sub>H\<^sub>O by auto
lemma add_eq_self_empty_iff: "M + N = M \<longleftrightarrow> N = {#}"
by (metis add.commute add_diff_cancel_right' monoid_add_class.add.left_neutral)
lemma
fixes M N :: "('a :: linorder) multiset"
shows
less_multiset_plus_left_nonempty[simp]: "M \<noteq> {#} \<Longrightarrow> N #\<subset># M + N" and
less_multiset_plus_right_nonempty[simp]: "N \<noteq> {#} \<Longrightarrow> M #\<subset># M + N"
using [[metis_verbose = false]]
by (metis add.right_neutral less_multiset_empty_left less_multiset_plus_plus_right_iff
add.commute)+
lemma ex_gt_imp_less_multiset: "(\<exists>y :: 'a :: linorder. y \<in># N \<and> (\<forall>x. x \<in># M \<longrightarrow> x < y)) \<Longrightarrow> M #\<subset># N"
unfolding less_multiset\<^sub>H\<^sub>O
by (metis count_eq_zero_iff count_greater_zero_iff less_le_not_le)
lemma ex_gt_count_imp_less_multiset:
"(\<forall>y :: 'a :: linorder. y \<in># M + N \<longrightarrow> y \<le> x) \<Longrightarrow> count M x < count N x \<Longrightarrow> M #\<subset># N"
unfolding less_multiset\<^sub>H\<^sub>O
by (metis add_gr_0 count_union mem_Collect_eq not_gr0 not_le not_less_iff_gr_or_eq set_mset_def)
lemma union_less_diff_plus: "P \<le># M \<Longrightarrow> N #\<subset># P \<Longrightarrow> M - P + N #\<subset># M"
by (drule subset_mset.diff_add[symmetric]) (metis union_less_mono2)
end