(* Title: ZF/func.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
*)
section\<open>Functions, Function Spaces, Lambda-Abstraction\<close>
theory func imports equalities Sum begin
subsection\<open>The Pi Operator: Dependent Function Space\<close>
lemma subset_Sigma_imp_relation: "r \<subseteq> Sigma(A,B) ==> relation(r)"
by (simp add: relation_def, blast)
lemma relation_converse_converse [simp]:
"relation(r) ==> converse(converse(r)) = r"
by (simp add: relation_def, blast)
lemma relation_restrict [simp]: "relation(restrict(r,A))"
by (simp add: restrict_def relation_def, blast)
lemma Pi_iff:
"f \<in> Pi(A,B) \<longleftrightarrow> function(f) & f<=Sigma(A,B) & A<=domain(f)"
by (unfold Pi_def, blast)
(*For upward compatibility with the former definition*)
lemma Pi_iff_old:
"f \<in> Pi(A,B) \<longleftrightarrow> f<=Sigma(A,B) & (\<forall>x\<in>A. \<exists>!y. <x,y>: f)"
by (unfold Pi_def function_def, blast)
lemma fun_is_function: "f \<in> Pi(A,B) ==> function(f)"
by (simp only: Pi_iff)
lemma function_imp_Pi:
"[|function(f); relation(f)|] ==> f \<in> domain(f) -> range(f)"
by (simp add: Pi_iff relation_def, blast)
lemma functionI:
"[| !!x y y'. [| <x,y>:r; <x,y'>:r |] ==> y=y' |] ==> function(r)"
by (simp add: function_def, blast)
(*Functions are relations*)
lemma fun_is_rel: "f \<in> Pi(A,B) ==> f \<subseteq> Sigma(A,B)"
by (unfold Pi_def, blast)
lemma Pi_cong:
"[| A=A'; !!x. x \<in> A' ==> B(x)=B'(x) |] ==> Pi(A,B) = Pi(A',B')"
by (simp add: Pi_def cong add: Sigma_cong)
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause
flex-flex pairs and the "Check your prover" error. Most
Sigmas and Pis are abbreviated as * or -> *)
(*Weakening one function type to another; see also Pi_type*)
lemma fun_weaken_type: "[| f \<in> A->B; B<=D |] ==> f \<in> A->D"
by (unfold Pi_def, best)
subsection\<open>Function Application\<close>
lemma apply_equality2: "[| <a,b>: f; <a,c>: f; f \<in> Pi(A,B) |] ==> b=c"
by (unfold Pi_def function_def, blast)
lemma function_apply_equality: "[| <a,b>: f; function(f) |] ==> f`a = b"
by (unfold apply_def function_def, blast)
lemma apply_equality: "[| <a,b>: f; f \<in> Pi(A,B) |] ==> f`a = b"
apply (unfold Pi_def)
apply (blast intro: function_apply_equality)
done
(*Applying a function outside its domain yields 0*)
lemma apply_0: "a \<notin> domain(f) ==> f`a = 0"
by (unfold apply_def, blast)
lemma Pi_memberD: "[| f \<in> Pi(A,B); c \<in> f |] ==> \<exists>x\<in>A. c = <x,f`x>"
apply (frule fun_is_rel)
apply (blast dest: apply_equality)
done
lemma function_apply_Pair: "[| function(f); a \<in> domain(f)|] ==> <a,f`a>: f"
apply (simp add: function_def, clarify)
apply (subgoal_tac "f`a = y", blast)
apply (simp add: apply_def, blast)
done
lemma apply_Pair: "[| f \<in> Pi(A,B); a \<in> A |] ==> <a,f`a>: f"
apply (simp add: Pi_iff)
apply (blast intro: function_apply_Pair)
done
(*Conclusion is flexible -- use rule_tac or else apply_funtype below!*)
lemma apply_type [TC]: "[| f \<in> Pi(A,B); a \<in> A |] ==> f`a \<in> B(a)"
by (blast intro: apply_Pair dest: fun_is_rel)
(*This version is acceptable to the simplifier*)
lemma apply_funtype: "[| f \<in> A->B; a \<in> A |] ==> f`a \<in> B"
by (blast dest: apply_type)
lemma apply_iff: "f \<in> Pi(A,B) ==> <a,b>: f \<longleftrightarrow> a \<in> A & f`a = b"
apply (frule fun_is_rel)
apply (blast intro!: apply_Pair apply_equality)
done
(*Refining one Pi type to another*)
lemma Pi_type: "[| f \<in> Pi(A,C); !!x. x \<in> A ==> f`x \<in> B(x) |] ==> f \<in> Pi(A,B)"
apply (simp only: Pi_iff)
apply (blast dest: function_apply_equality)
done
(*Such functions arise in non-standard datatypes, ZF/ex/Ntree for instance*)
lemma Pi_Collect_iff:
"(f \<in> Pi(A, %x. {y \<in> B(x). P(x,y)}))
\<longleftrightarrow> f \<in> Pi(A,B) & (\<forall>x\<in>A. P(x, f`x))"
by (blast intro: Pi_type dest: apply_type)
lemma Pi_weaken_type:
"[| f \<in> Pi(A,B); !!x. x \<in> A ==> B(x)<=C(x) |] ==> f \<in> Pi(A,C)"
by (blast intro: Pi_type dest: apply_type)
(** Elimination of membership in a function **)
lemma domain_type: "[| <a,b> \<in> f; f \<in> Pi(A,B) |] ==> a \<in> A"
by (blast dest: fun_is_rel)
lemma range_type: "[| <a,b> \<in> f; f \<in> Pi(A,B) |] ==> b \<in> B(a)"
by (blast dest: fun_is_rel)
lemma Pair_mem_PiD: "[| <a,b>: f; f \<in> Pi(A,B) |] ==> a \<in> A & b \<in> B(a) & f`a = b"
by (blast intro: domain_type range_type apply_equality)
subsection\<open>Lambda Abstraction\<close>
lemma lamI: "a \<in> A ==> <a,b(a)> \<in> (\<lambda>x\<in>A. b(x))"
apply (unfold lam_def)
apply (erule RepFunI)
done
lemma lamE:
"[| p: (\<lambda>x\<in>A. b(x)); !!x.[| x \<in> A; p=<x,b(x)> |] ==> P
|] ==> P"
by (simp add: lam_def, blast)
lemma lamD: "[| <a,c>: (\<lambda>x\<in>A. b(x)) |] ==> c = b(a)"
by (simp add: lam_def)
lemma lam_type [TC]:
"[| !!x. x \<in> A ==> b(x): B(x) |] ==> (\<lambda>x\<in>A. b(x)) \<in> Pi(A,B)"
by (simp add: lam_def Pi_def function_def, blast)
lemma lam_funtype: "(\<lambda>x\<in>A. b(x)) \<in> A -> {b(x). x \<in> A}"
by (blast intro: lam_type)
lemma function_lam: "function (\<lambda>x\<in>A. b(x))"
by (simp add: function_def lam_def)
lemma relation_lam: "relation (\<lambda>x\<in>A. b(x))"
by (simp add: relation_def lam_def)
lemma beta_if [simp]: "(\<lambda>x\<in>A. b(x)) ` a = (if a \<in> A then b(a) else 0)"
by (simp add: apply_def lam_def, blast)
lemma beta: "a \<in> A ==> (\<lambda>x\<in>A. b(x)) ` a = b(a)"
by (simp add: apply_def lam_def, blast)
lemma lam_empty [simp]: "(\<lambda>x\<in>0. b(x)) = 0"
by (simp add: lam_def)
lemma domain_lam [simp]: "domain(Lambda(A,b)) = A"
by (simp add: lam_def, blast)
(*congruence rule for lambda abstraction*)
lemma lam_cong [cong]:
"[| A=A'; !!x. x \<in> A' ==> b(x)=b'(x) |] ==> Lambda(A,b) = Lambda(A',b')"
by (simp only: lam_def cong add: RepFun_cong)
lemma lam_theI:
"(!!x. x \<in> A ==> \<exists>!y. Q(x,y)) ==> \<exists>f. \<forall>x\<in>A. Q(x, f`x)"
apply (rule_tac x = "\<lambda>x\<in>A. THE y. Q (x,y)" in exI)
apply simp
apply (blast intro: theI)
done
lemma lam_eqE: "[| (\<lambda>x\<in>A. f(x)) = (\<lambda>x\<in>A. g(x)); a \<in> A |] ==> f(a)=g(a)"
by (fast intro!: lamI elim: equalityE lamE)
(*Empty function spaces*)
lemma Pi_empty1 [simp]: "Pi(0,A) = {0}"
by (unfold Pi_def function_def, blast)
(*The singleton function*)
lemma singleton_fun [simp]: "{<a,b>} \<in> {a} -> {b}"
by (unfold Pi_def function_def, blast)
lemma Pi_empty2 [simp]: "(A->0) = (if A=0 then {0} else 0)"
by (unfold Pi_def function_def, force)
lemma fun_space_empty_iff [iff]: "(A->X)=0 \<longleftrightarrow> X=0 & (A \<noteq> 0)"
apply auto
apply (fast intro!: equals0I intro: lam_type)
done
subsection\<open>Extensionality\<close>
(*Semi-extensionality!*)
lemma fun_subset:
"[| f \<in> Pi(A,B); g \<in> Pi(C,D); A<=C;
!!x. x \<in> A ==> f`x = g`x |] ==> f<=g"
by (force dest: Pi_memberD intro: apply_Pair)
lemma fun_extension:
"[| f \<in> Pi(A,B); g \<in> Pi(A,D);
!!x. x \<in> A ==> f`x = g`x |] ==> f=g"
by (blast del: subsetI intro: subset_refl sym fun_subset)
lemma eta [simp]: "f \<in> Pi(A,B) ==> (\<lambda>x\<in>A. f`x) = f"
apply (rule fun_extension)
apply (auto simp add: lam_type apply_type beta)
done
lemma fun_extension_iff:
"[| f \<in> Pi(A,B); g \<in> Pi(A,C) |] ==> (\<forall>a\<in>A. f`a = g`a) \<longleftrightarrow> f=g"
by (blast intro: fun_extension)
(*thm by Mark Staples, proof by lcp*)
lemma fun_subset_eq: "[| f \<in> Pi(A,B); g \<in> Pi(A,C) |] ==> f \<subseteq> g \<longleftrightarrow> (f = g)"
by (blast dest: apply_Pair
intro: fun_extension apply_equality [symmetric])
(*Every element of Pi(A,B) may be expressed as a lambda abstraction!*)
lemma Pi_lamE:
assumes major: "f \<in> Pi(A,B)"
and minor: "!!b. [| \<forall>x\<in>A. b(x):B(x); f = (\<lambda>x\<in>A. b(x)) |] ==> P"
shows "P"
apply (rule minor)
apply (rule_tac [2] eta [symmetric])
apply (blast intro: major apply_type)+
done
subsection\<open>Images of Functions\<close>
lemma image_lam: "C \<subseteq> A ==> (\<lambda>x\<in>A. b(x)) `` C = {b(x). x \<in> C}"
by (unfold lam_def, blast)
lemma Repfun_function_if:
"function(f)
==> {f`x. x \<in> C} = (if C \<subseteq> domain(f) then f``C else cons(0,f``C))"
apply simp
apply (intro conjI impI)
apply (blast dest: function_apply_equality intro: function_apply_Pair)
apply (rule equalityI)
apply (blast intro!: function_apply_Pair apply_0)
apply (blast dest: function_apply_equality intro: apply_0 [symmetric])
done
(*For this lemma and the next, the right-hand side could equivalently
be written \<Union>x\<in>C. {f`x} *)
lemma image_function:
"[| function(f); C \<subseteq> domain(f) |] ==> f``C = {f`x. x \<in> C}"
by (simp add: Repfun_function_if)
lemma image_fun: "[| f \<in> Pi(A,B); C \<subseteq> A |] ==> f``C = {f`x. x \<in> C}"
apply (simp add: Pi_iff)
apply (blast intro: image_function)
done
lemma image_eq_UN:
assumes f: "f \<in> Pi(A,B)" "C \<subseteq> A" shows "f``C = (\<Union>x\<in>C. {f ` x})"
by (auto simp add: image_fun [OF f])
lemma Pi_image_cons:
"[| f \<in> Pi(A,B); x \<in> A |] ==> f `` cons(x,y) = cons(f`x, f``y)"
by (blast dest: apply_equality apply_Pair)
subsection\<open>Properties of @{term "restrict(f,A)"}\<close>
lemma restrict_subset: "restrict(f,A) \<subseteq> f"
by (unfold restrict_def, blast)
lemma function_restrictI:
"function(f) ==> function(restrict(f,A))"
by (unfold restrict_def function_def, blast)
lemma restrict_type2: "[| f \<in> Pi(C,B); A<=C |] ==> restrict(f,A) \<in> Pi(A,B)"
by (simp add: Pi_iff function_def restrict_def, blast)
lemma restrict: "restrict(f,A) ` a = (if a \<in> A then f`a else 0)"
by (simp add: apply_def restrict_def, blast)
lemma restrict_empty [simp]: "restrict(f,0) = 0"
by (unfold restrict_def, simp)
lemma restrict_iff: "z \<in> restrict(r,A) \<longleftrightarrow> z \<in> r & (\<exists>x\<in>A. \<exists>y. z = \<langle>x, y\<rangle>)"
by (simp add: restrict_def)
lemma restrict_restrict [simp]:
"restrict(restrict(r,A),B) = restrict(r, A \<inter> B)"
by (unfold restrict_def, blast)
lemma domain_restrict [simp]: "domain(restrict(f,C)) = domain(f) \<inter> C"
apply (unfold restrict_def)
apply (auto simp add: domain_def)
done
lemma restrict_idem: "f \<subseteq> Sigma(A,B) ==> restrict(f,A) = f"
by (simp add: restrict_def, blast)
(*converse probably holds too*)
lemma domain_restrict_idem:
"[| domain(r) \<subseteq> A; relation(r) |] ==> restrict(r,A) = r"
by (simp add: restrict_def relation_def, blast)
lemma domain_restrict_lam [simp]: "domain(restrict(Lambda(A,f),C)) = A \<inter> C"
apply (unfold restrict_def lam_def)
apply (rule equalityI)
apply (auto simp add: domain_iff)
done
lemma restrict_if [simp]: "restrict(f,A) ` a = (if a \<in> A then f`a else 0)"
by (simp add: restrict apply_0)
lemma restrict_lam_eq:
"A<=C ==> restrict(\<lambda>x\<in>C. b(x), A) = (\<lambda>x\<in>A. b(x))"
by (unfold restrict_def lam_def, auto)
lemma fun_cons_restrict_eq:
"f \<in> cons(a, b) -> B ==> f = cons(<a, f ` a>, restrict(f, b))"
apply (rule equalityI)
prefer 2 apply (blast intro: apply_Pair restrict_subset [THEN subsetD])
apply (auto dest!: Pi_memberD simp add: restrict_def lam_def)
done
subsection\<open>Unions of Functions\<close>
(** The Union of a set of COMPATIBLE functions is a function **)
lemma function_Union:
"[| \<forall>x\<in>S. function(x);
\<forall>x\<in>S. \<forall>y\<in>S. x<=y | y<=x |]
==> function(\<Union>(S))"
by (unfold function_def, blast)
lemma fun_Union:
"[| \<forall>f\<in>S. \<exists>C D. f \<in> C->D;
\<forall>f\<in>S. \<forall>y\<in>S. f<=y | y<=f |] ==>
\<Union>(S) \<in> domain(\<Union>(S)) -> range(\<Union>(S))"
apply (unfold Pi_def)
apply (blast intro!: rel_Union function_Union)
done
lemma gen_relation_Union [rule_format]:
"\<forall>f\<in>F. relation(f) \<Longrightarrow> relation(\<Union>(F))"
by (simp add: relation_def)
(** The Union of 2 disjoint functions is a function **)
lemmas Un_rls = Un_subset_iff SUM_Un_distrib1 prod_Un_distrib2
subset_trans [OF _ Un_upper1]
subset_trans [OF _ Un_upper2]
lemma fun_disjoint_Un:
"[| f \<in> A->B; g \<in> C->D; A \<inter> C = 0 |]
==> (f \<union> g) \<in> (A \<union> C) -> (B \<union> D)"
(*Prove the product and domain subgoals using distributive laws*)
apply (simp add: Pi_iff extension Un_rls)
apply (unfold function_def, blast)
done
lemma fun_disjoint_apply1: "a \<notin> domain(g) ==> (f \<union> g)`a = f`a"
by (simp add: apply_def, blast)
lemma fun_disjoint_apply2: "c \<notin> domain(f) ==> (f \<union> g)`c = g`c"
by (simp add: apply_def, blast)
subsection\<open>Domain and Range of a Function or Relation\<close>
lemma domain_of_fun: "f \<in> Pi(A,B) ==> domain(f)=A"
by (unfold Pi_def, blast)
lemma apply_rangeI: "[| f \<in> Pi(A,B); a \<in> A |] ==> f`a \<in> range(f)"
by (erule apply_Pair [THEN rangeI], assumption)
lemma range_of_fun: "f \<in> Pi(A,B) ==> f \<in> A->range(f)"
by (blast intro: Pi_type apply_rangeI)
subsection\<open>Extensions of Functions\<close>
lemma fun_extend:
"[| f \<in> A->B; c\<notin>A |] ==> cons(<c,b>,f) \<in> cons(c,A) -> cons(b,B)"
apply (frule singleton_fun [THEN fun_disjoint_Un], blast)
apply (simp add: cons_eq)
done
lemma fun_extend3:
"[| f \<in> A->B; c\<notin>A; b \<in> B |] ==> cons(<c,b>,f) \<in> cons(c,A) -> B"
by (blast intro: fun_extend [THEN fun_weaken_type])
lemma extend_apply:
"c \<notin> domain(f) ==> cons(<c,b>,f)`a = (if a=c then b else f`a)"
by (auto simp add: apply_def)
lemma fun_extend_apply [simp]:
"[| f \<in> A->B; c\<notin>A |] ==> cons(<c,b>,f)`a = (if a=c then b else f`a)"
apply (rule extend_apply)
apply (simp add: Pi_def, blast)
done
lemmas singleton_apply = apply_equality [OF singletonI singleton_fun, simp]
(*For Finite.ML. Inclusion of right into left is easy*)
lemma cons_fun_eq:
"c \<notin> A ==> cons(c,A) -> B = (\<Union>f \<in> A->B. \<Union>b\<in>B. {cons(<c,b>, f)})"
apply (rule equalityI)
apply (safe elim!: fun_extend3)
(*Inclusion of left into right*)
apply (subgoal_tac "restrict (x, A) \<in> A -> B")
prefer 2 apply (blast intro: restrict_type2)
apply (rule UN_I, assumption)
apply (rule apply_funtype [THEN UN_I])
apply assumption
apply (rule consI1)
apply (simp (no_asm))
apply (rule fun_extension)
apply assumption
apply (blast intro: fun_extend)
apply (erule consE, simp_all)
done
lemma succ_fun_eq: "succ(n) -> B = (\<Union>f \<in> n->B. \<Union>b\<in>B. {cons(<n,b>, f)})"
by (simp add: succ_def mem_not_refl cons_fun_eq)
subsection\<open>Function Updates\<close>
definition
update :: "[i,i,i] => i" where
"update(f,a,b) == \<lambda>x\<in>cons(a, domain(f)). if(x=a, b, f`x)"
nonterminal updbinds and updbind
syntax
(* Let expressions *)
"_updbind" :: "[i, i] => updbind" ("(2_ :=/ _)")
"" :: "updbind => updbinds" ("_")
"_updbinds" :: "[updbind, updbinds] => updbinds" ("_,/ _")
"_Update" :: "[i, updbinds] => i" ("_/'((_)')" [900,0] 900)
translations
"_Update (f, _updbinds(b,bs))" == "_Update (_Update(f,b), bs)"
"f(x:=y)" == "CONST update(f,x,y)"
lemma update_apply [simp]: "f(x:=y) ` z = (if z=x then y else f`z)"
apply (simp add: update_def)
apply (case_tac "z \<in> domain(f)")
apply (simp_all add: apply_0)
done
lemma update_idem: "[| f`x = y; f \<in> Pi(A,B); x \<in> A |] ==> f(x:=y) = f"
apply (unfold update_def)
apply (simp add: domain_of_fun cons_absorb)
apply (rule fun_extension)
apply (best intro: apply_type if_type lam_type, assumption, simp)
done
(* [| f \<in> Pi(A, B); x \<in> A |] ==> f(x := f`x) = f *)
declare refl [THEN update_idem, simp]
lemma domain_update [simp]: "domain(f(x:=y)) = cons(x, domain(f))"
by (unfold update_def, simp)
lemma update_type: "[| f \<in> Pi(A,B); x \<in> A; y \<in> B(x) |] ==> f(x:=y) \<in> Pi(A, B)"
apply (unfold update_def)
apply (simp add: domain_of_fun cons_absorb apply_funtype lam_type)
done
subsection\<open>Monotonicity Theorems\<close>
subsubsection\<open>Replacement in its Various Forms\<close>
(*Not easy to express monotonicity in P, since any "bigger" predicate
would have to be single-valued*)
lemma Replace_mono: "A<=B ==> Replace(A,P) \<subseteq> Replace(B,P)"
by (blast elim!: ReplaceE)
lemma RepFun_mono: "A<=B ==> {f(x). x \<in> A} \<subseteq> {f(x). x \<in> B}"
by blast
lemma Pow_mono: "A<=B ==> Pow(A) \<subseteq> Pow(B)"
by blast
lemma Union_mono: "A<=B ==> \<Union>(A) \<subseteq> \<Union>(B)"
by blast
lemma UN_mono:
"[| A<=C; !!x. x \<in> A ==> B(x)<=D(x) |] ==> (\<Union>x\<in>A. B(x)) \<subseteq> (\<Union>x\<in>C. D(x))"
by blast
(*Intersection is ANTI-monotonic. There are TWO premises! *)
lemma Inter_anti_mono: "[| A<=B; A\<noteq>0 |] ==> \<Inter>(B) \<subseteq> \<Inter>(A)"
by blast
lemma cons_mono: "C<=D ==> cons(a,C) \<subseteq> cons(a,D)"
by blast
lemma Un_mono: "[| A<=C; B<=D |] ==> A \<union> B \<subseteq> C \<union> D"
by blast
lemma Int_mono: "[| A<=C; B<=D |] ==> A \<inter> B \<subseteq> C \<inter> D"
by blast
lemma Diff_mono: "[| A<=C; D<=B |] ==> A-B \<subseteq> C-D"
by blast
subsubsection\<open>Standard Products, Sums and Function Spaces\<close>
lemma Sigma_mono [rule_format]:
"[| A<=C; !!x. x \<in> A \<longrightarrow> B(x) \<subseteq> D(x) |] ==> Sigma(A,B) \<subseteq> Sigma(C,D)"
by blast
lemma sum_mono: "[| A<=C; B<=D |] ==> A+B \<subseteq> C+D"
by (unfold sum_def, blast)
(*Note that B->A and C->A are typically disjoint!*)
lemma Pi_mono: "B<=C ==> A->B \<subseteq> A->C"
by (blast intro: lam_type elim: Pi_lamE)
lemma lam_mono: "A<=B ==> Lambda(A,c) \<subseteq> Lambda(B,c)"
apply (unfold lam_def)
apply (erule RepFun_mono)
done
subsubsection\<open>Converse, Domain, Range, Field\<close>
lemma converse_mono: "r<=s ==> converse(r) \<subseteq> converse(s)"
by blast
lemma domain_mono: "r<=s ==> domain(r)<=domain(s)"
by blast
lemmas domain_rel_subset = subset_trans [OF domain_mono domain_subset]
lemma range_mono: "r<=s ==> range(r)<=range(s)"
by blast
lemmas range_rel_subset = subset_trans [OF range_mono range_subset]
lemma field_mono: "r<=s ==> field(r)<=field(s)"
by blast
lemma field_rel_subset: "r \<subseteq> A*A ==> field(r) \<subseteq> A"
by (erule field_mono [THEN subset_trans], blast)
subsubsection\<open>Images\<close>
lemma image_pair_mono:
"[| !! x y. <x,y>:r ==> <x,y>:s; A<=B |] ==> r``A \<subseteq> s``B"
by blast
lemma vimage_pair_mono:
"[| !! x y. <x,y>:r ==> <x,y>:s; A<=B |] ==> r-``A \<subseteq> s-``B"
by blast
lemma image_mono: "[| r<=s; A<=B |] ==> r``A \<subseteq> s``B"
by blast
lemma vimage_mono: "[| r<=s; A<=B |] ==> r-``A \<subseteq> s-``B"
by blast
lemma Collect_mono:
"[| A<=B; !!x. x \<in> A ==> P(x) \<longrightarrow> Q(x) |] ==> Collect(A,P) \<subseteq> Collect(B,Q)"
by blast
(*Used in intr_elim.ML and in individual datatype definitions*)
lemmas basic_monos = subset_refl imp_refl disj_mono conj_mono ex_mono
Collect_mono Part_mono in_mono
(* Useful with simp; contributed by Clemens Ballarin. *)
lemma bex_image_simp:
"[| f \<in> Pi(X, Y); A \<subseteq> X |] ==> (\<exists>x\<in>f``A. P(x)) \<longleftrightarrow> (\<exists>x\<in>A. P(f`x))"
apply safe
apply rule
prefer 2 apply assumption
apply (simp add: apply_equality)
apply (blast intro: apply_Pair)
done
lemma ball_image_simp:
"[| f \<in> Pi(X, Y); A \<subseteq> X |] ==> (\<forall>x\<in>f``A. P(x)) \<longleftrightarrow> (\<forall>x\<in>A. P(f`x))"
apply safe
apply (blast intro: apply_Pair)
apply (drule bspec) apply assumption
apply (simp add: apply_equality)
done
end