method "sizechange" proves termination of functions; added more infrastructure for termination proofs
(* Title: HOL/ex/Primrec.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1997 University of Cambridge
Ackermann's Function and the
Primitive Recursive Functions.
*)
header {* Primitive Recursive Functions *}
theory Primrec imports Main begin
text {*
Proof adopted from
Nora Szasz, A Machine Checked Proof that Ackermann's Function is not
Primitive Recursive, In: Huet \& Plotkin, eds., Logical Environments
(CUP, 1993), 317-338.
See also E. Mendelson, Introduction to Mathematical Logic. (Van
Nostrand, 1964), page 250, exercise 11.
\medskip
*}
subsection{* Ackermann's Function *}
fun ack :: "nat => nat => nat" where
"ack 0 n = Suc n" |
"ack (Suc m) 0 = ack m 1" |
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
text {* PROPERTY A 4 *}
lemma less_ack2 [iff]: "j < ack i j"
by (induct i j rule: ack.induct) simp_all
text {* PROPERTY A 5-, the single-step lemma *}
lemma ack_less_ack_Suc2 [iff]: "ack i j < ack i (Suc j)"
by (induct i j rule: ack.induct) simp_all
text {* PROPERTY A 5, monotonicity for @{text "<"} *}
lemma ack_less_mono2: "j < k ==> ack i j < ack i k"
using lift_Suc_mono_less[where f = "ack i"]
by (metis ack_less_ack_Suc2)
text {* PROPERTY A 5', monotonicity for @{text \<le>} *}
lemma ack_le_mono2: "j \<le> k ==> ack i j \<le> ack i k"
apply (simp add: order_le_less)
apply (blast intro: ack_less_mono2)
done
text {* PROPERTY A 6 *}
lemma ack2_le_ack1 [iff]: "ack i (Suc j) \<le> ack (Suc i) j"
proof (induct j)
case 0 show ?case by simp
next
case (Suc j) show ?case
by (auto intro!: ack_le_mono2)
(metis Suc Suc_leI Suc_lessI less_ack2 linorder_not_less)
qed
text {* PROPERTY A 7-, the single-step lemma *}
lemma ack_less_ack_Suc1 [iff]: "ack i j < ack (Suc i) j"
by (blast intro: ack_less_mono2 less_le_trans)
text {* PROPERTY A 4'? Extra lemma needed for @{term CONSTANT} case, constant functions *}
lemma less_ack1 [iff]: "i < ack i j"
apply (induct i)
apply simp_all
apply (blast intro: Suc_leI le_less_trans)
done
text {* PROPERTY A 8 *}
lemma ack_1 [simp]: "ack (Suc 0) j = j + 2"
by (induct j) simp_all
text {* PROPERTY A 9. The unary @{text 1} and @{text 2} in @{term
ack} is essential for the rewriting. *}
lemma ack_2 [simp]: "ack (Suc (Suc 0)) j = 2 * j + 3"
by (induct j) simp_all
text {* PROPERTY A 7, monotonicity for @{text "<"} [not clear why
@{thm [source] ack_1} is now needed first!] *}
lemma ack_less_mono1_aux: "ack i k < ack (Suc (i +i')) k"
apply (induct i k rule: ack.induct)
apply simp_all
prefer 2
apply (blast intro: less_trans ack_less_mono2)
apply (induct_tac i' n rule: ack.induct)
apply simp_all
apply (blast intro: Suc_leI [THEN le_less_trans] ack_less_mono2)
done
lemma ack_less_mono1: "i < j ==> ack i k < ack j k"
apply (drule less_imp_Suc_add)
apply (blast intro!: ack_less_mono1_aux)
done
text {* PROPERTY A 7', monotonicity for @{text "\<le>"} *}
lemma ack_le_mono1: "i \<le> j ==> ack i k \<le> ack j k"
apply (simp add: order_le_less)
apply (blast intro: ack_less_mono1)
done
text {* PROPERTY A 10 *}
lemma ack_nest_bound: "ack i1 (ack i2 j) < ack (2 + (i1 + i2)) j"
apply (simp add: numerals)
apply (rule ack2_le_ack1 [THEN [2] less_le_trans])
apply simp
apply (rule le_add1 [THEN ack_le_mono1, THEN le_less_trans])
apply (rule ack_less_mono1 [THEN ack_less_mono2])
apply (simp add: le_imp_less_Suc le_add2)
done
text {* PROPERTY A 11 *}
lemma ack_add_bound: "ack i1 j + ack i2 j < ack (4 + (i1 + i2)) j"
apply (rule less_trans [of _ "ack (Suc (Suc 0)) (ack (i1 + i2) j)"])
prefer 2
apply (rule ack_nest_bound [THEN less_le_trans])
apply (simp add: Suc3_eq_add_3)
apply simp
apply (cut_tac i = i1 and m1 = i2 and k = j in le_add1 [THEN ack_le_mono1])
apply (cut_tac i = "i2" and m1 = i1 and k = j in le_add2 [THEN ack_le_mono1])
apply auto
done
text {* PROPERTY A 12. Article uses existential quantifier but the ALF proof
used @{text "k + 4"}. Quantified version must be nested @{text
"\<exists>k'. \<forall>i j. ..."} *}
lemma ack_add_bound2: "i < ack k j ==> i + j < ack (4 + k) j"
apply (rule less_trans [of _ "ack k j + ack 0 j"])
apply (blast intro: add_less_mono less_ack2)
apply (rule ack_add_bound [THEN less_le_trans])
apply simp
done
subsection{*Primitive Recursive Functions*}
primrec hd0 :: "nat list => nat" where
"hd0 [] = 0" |
"hd0 (m # ms) = m"
text {* Inductive definition of the set of primitive recursive functions of type @{typ "nat list => nat"}. *}
definition SC :: "nat list => nat" where
"SC l = Suc (hd0 l)"
definition CONSTANT :: "nat => nat list => nat" where
"CONSTANT k l = k"
definition PROJ :: "nat => nat list => nat" where
"PROJ i l = hd0 (drop i l)"
definition
COMP :: "(nat list => nat) => (nat list => nat) list => nat list => nat"
where "COMP g fs l = g (map (\<lambda>f. f l) fs)"
definition PREC :: "(nat list => nat) => (nat list => nat) => nat list => nat"
where
"PREC f g l =
(case l of
[] => 0
| x # l' => nat_rec (f l') (\<lambda>y r. g (r # y # l')) x)"
-- {* Note that @{term g} is applied first to @{term "PREC f g y"} and then to @{term y}! *}
inductive PRIMREC :: "(nat list => nat) => bool" where
SC: "PRIMREC SC" |
CONSTANT: "PRIMREC (CONSTANT k)" |
PROJ: "PRIMREC (PROJ i)" |
COMP: "PRIMREC g ==> \<forall>f \<in> set fs. PRIMREC f ==> PRIMREC (COMP g fs)" |
PREC: "PRIMREC f ==> PRIMREC g ==> PRIMREC (PREC f g)"
text {* Useful special cases of evaluation *}
lemma SC [simp]: "SC (x # l) = Suc x"
by (simp add: SC_def)
lemma CONSTANT [simp]: "CONSTANT k l = k"
by (simp add: CONSTANT_def)
lemma PROJ_0 [simp]: "PROJ 0 (x # l) = x"
by (simp add: PROJ_def)
lemma COMP_1 [simp]: "COMP g [f] l = g [f l]"
by (simp add: COMP_def)
lemma PREC_0 [simp]: "PREC f g (0 # l) = f l"
by (simp add: PREC_def)
lemma PREC_Suc [simp]: "PREC f g (Suc x # l) = g (PREC f g (x # l) # x # l)"
by (simp add: PREC_def)
text {* MAIN RESULT *}
lemma SC_case: "SC l < ack 1 (listsum l)"
apply (unfold SC_def)
apply (induct l)
apply (simp_all add: le_add1 le_imp_less_Suc)
done
lemma CONSTANT_case: "CONSTANT k l < ack k (listsum l)"
by simp
lemma PROJ_case: "PROJ i l < ack 0 (listsum l)"
apply (simp add: PROJ_def)
apply (induct l arbitrary:i)
apply (auto simp add: drop_Cons split: nat.split)
apply (blast intro: less_le_trans le_add2)
done
text {* @{term COMP} case *}
lemma COMP_map_aux: "\<forall>f \<in> set fs. PRIMREC f \<and> (\<exists>kf. \<forall>l. f l < ack kf (listsum l))
==> \<exists>k. \<forall>l. listsum (map (\<lambda>f. f l) fs) < ack k (listsum l)"
apply (induct fs)
apply (rule_tac x = 0 in exI)
apply simp
apply simp
apply (blast intro: add_less_mono ack_add_bound less_trans)
done
lemma COMP_case:
"\<forall>l. g l < ack kg (listsum l) ==>
\<forall>f \<in> set fs. PRIMREC f \<and> (\<exists>kf. \<forall>l. f l < ack kf (listsum l))
==> \<exists>k. \<forall>l. COMP g fs l < ack k (listsum l)"
apply (unfold COMP_def)
--{*Now, if meson tolerated map, we could finish with
@{text "(drule COMP_map_aux, meson ack_less_mono2 ack_nest_bound less_trans)"} *}
apply (erule COMP_map_aux [THEN exE])
apply (rule exI)
apply (rule allI)
apply (drule spec)+
apply (erule less_trans)
apply (blast intro: ack_less_mono2 ack_nest_bound less_trans)
done
text {* @{term PREC} case *}
lemma PREC_case_aux:
"\<forall>l. f l + listsum l < ack kf (listsum l) ==>
\<forall>l. g l + listsum l < ack kg (listsum l) ==>
PREC f g l + listsum l < ack (Suc (kf + kg)) (listsum l)"
apply (unfold PREC_def)
apply (case_tac l)
apply simp_all
apply (blast intro: less_trans)
apply (erule ssubst) -- {* get rid of the needless assumption *}
apply (induct_tac a)
apply simp_all
txt {* base case *}
apply (blast intro: le_add1 [THEN le_imp_less_Suc, THEN ack_less_mono1] less_trans)
txt {* induction step *}
apply (rule Suc_leI [THEN le_less_trans])
apply (rule le_refl [THEN add_le_mono, THEN le_less_trans])
prefer 2
apply (erule spec)
apply (simp add: le_add2)
txt {* final part of the simplification *}
apply simp
apply (rule le_add2 [THEN ack_le_mono1, THEN le_less_trans])
apply (erule ack_less_mono2)
done
lemma PREC_case:
"\<forall>l. f l < ack kf (listsum l) ==>
\<forall>l. g l < ack kg (listsum l) ==>
\<exists>k. \<forall>l. PREC f g l < ack k (listsum l)"
by (metis le_less_trans [OF le_add1 PREC_case_aux] ack_add_bound2)
lemma ack_bounds_PRIMREC: "PRIMREC f ==> \<exists>k. \<forall>l. f l < ack k (listsum l)"
apply (erule PRIMREC.induct)
apply (blast intro: SC_case CONSTANT_case PROJ_case COMP_case PREC_case)+
done
theorem ack_not_PRIMREC:
"\<not> PRIMREC (\<lambda>l. case l of [] => 0 | x # l' => ack x x)"
apply (rule notI)
apply (erule ack_bounds_PRIMREC [THEN exE])
apply (rule less_irrefl [THEN notE])
apply (drule_tac x = "[x]" in spec)
apply simp
done
end