src/HOL/ex/svc_test.thy
author krauss
Tue, 16 Dec 2008 08:46:07 +0100
changeset 29125 d41182a8135c
parent 20807 bd3b60f9a343
child 41589 bbd861837ebc
permissions -rw-r--r--
method "sizechange" proves termination of functions; added more infrastructure for termination proofs


(* $Id$ *)

header {* Demonstrating the interface SVC *}

theory svc_test
imports SVC_Oracle
begin

subsubsection {* Propositional Logic *}

text {*
  @{text "blast"}'s runtime for this type of problem appears to be exponential
  in its length, though @{text "fast"} manages.
*}
lemma "P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P"
  by (tactic {* svc_tac 1 *})


subsection {* Some big tautologies supplied by John Harrison *}

text {*
  @{text "auto"} manages; @{text "blast"} and @{text "fast"} take a minute or more.
*}
lemma puz013_1: "~(~v12 &
   v0 &
   v10 &
   (v4 | v5) &
   (v9 | v2) &
   (v8 | v1) &
   (v7 | v0) &
   (v3 | v12) &
   (v11 | v10) &
   (~v12 | ~v6 | v7) &
   (~v10 | ~v3 | v1) &
   (~v10 | ~v0 | ~v4 | v11) &
   (~v5 | ~v2 | ~v8) &
   (~v12 | ~v9 | ~v7) &
   (~v0 | ~v1 | v4) &
   (~v4 | v7 | v2) &
   (~v12 | ~v3 | v8) &
   (~v4 | v5 | v6) &
   (~v7 | ~v8 | v9) &
   (~v10 | ~v11 | v12))"
  by (tactic {* svc_tac 1 *})

lemma dk17_be:
  "(GE17 <-> ~IN4 & ~IN3 & ~IN2 & ~IN1) &
    (GE0 <-> GE17 & ~IN5) &
    (GE22 <-> ~IN9 & ~IN7 & ~IN6 & IN0) &
    (GE19 <-> ~IN5 & ~IN4 & ~IN3 & ~IN0) &
    (GE20 <-> ~IN7 & ~IN6) &
    (GE18 <-> ~IN6 & ~IN2 & ~IN1 & ~IN0) &
    (GE21 <-> IN9 & ~IN7 & IN6 & ~IN0) &
    (GE23 <-> GE22 & GE0) &
    (GE25 <-> ~IN9 & ~IN7 & IN6 & ~IN0) &
    (GE26 <-> IN9 & ~IN7 & ~IN6 & IN0) &
    (GE2 <-> GE20 & GE19) &
    (GE1 <-> GE18 & ~IN7) &
    (GE24 <-> GE23 | GE21 & GE0) &
    (GE5 <-> ~IN5 & IN4 | IN5 & ~IN4) &
    (GE6 <-> GE0 & IN7 & ~IN6 & ~IN0) &
    (GE12 <-> GE26 & GE0 | GE25 & GE0) &
    (GE14 <-> GE2 & IN8 & ~IN2 & IN1) &
    (GE27 <-> ~IN8 & IN5 & ~IN4 & ~IN3) &
    (GE9 <-> GE1 & ~IN5 & ~IN4 & IN3) &
    (GE7 <-> GE24 | GE2 & IN2 & ~IN1) &
    (GE10 <-> GE6 | GE5 & GE1 & ~IN3) &
    (GE15 <-> ~IN8 | IN9) &
    (GE16 <-> GE12 | GE14 & ~IN9) &
    (GE4 <->
     GE5 & GE1 & IN8 & ~IN3 |
     GE0 & ~IN7 & IN6 & ~IN0 |
     GE2 & IN2 & ~IN1) &
    (GE13 <-> GE27 & GE1) &
    (GE11 <-> GE9 | GE6 & ~IN8) &
    (GE8 <-> GE1 & ~IN5 & IN4 & ~IN3 | GE2 & ~IN2 & IN1) &
    (OUT0 <-> GE7 & ~IN8) &
    (OUT1 <-> GE7 & IN8) &
    (OUT2 <-> GE8 & ~IN9 | GE10 & IN8) &
    (OUT3 <-> GE8 & IN9 & ~IN8 | GE11 & ~IN9 | GE12 & ~IN8) &
    (OUT4 <-> GE11 & IN9 | GE12 & IN8) &
    (OUT5 <-> GE14 & IN9) &
    (OUT6 <-> GE13 & ~IN9) &
    (OUT7 <-> GE13 & IN9) &
    (OUT8 <-> GE9 & ~IN8 | GE15 & GE6 | GE4 & IN9) &
    (OUT9 <-> GE9 & IN8 | ~GE15 & GE10 | GE16) &
    (OUT10 <-> GE7) &
    (WRES0 <-> ~IN5 & ~IN4 & ~IN3 & ~IN2 & ~IN1) &
    (WRES1 <-> ~IN7 & ~IN6 & ~IN2 & ~IN1 & ~IN0) &
    (WRES2 <-> ~IN7 & ~IN6 & ~IN5 & ~IN4 & ~IN3 & ~IN0) &
    (WRES5 <-> ~IN5 & IN4 | IN5 & ~IN4) &
    (WRES6 <-> WRES0 & IN7 & ~IN6 & ~IN0) &
    (WRES9 <-> WRES1 & ~IN5 & ~IN4 & IN3) &
    (WRES7 <->
     WRES0 & ~IN9 & ~IN7 & ~IN6 & IN0 |
     WRES0 & IN9 & ~IN7 & IN6 & ~IN0 |
     WRES2 & IN2 & ~IN1) &
    (WRES10 <-> WRES6 | WRES5 & WRES1 & ~IN3) &
    (WRES12 <->
     WRES0 & IN9 & ~IN7 & ~IN6 & IN0 |
     WRES0 & ~IN9 & ~IN7 & IN6 & ~IN0) &
    (WRES14 <-> WRES2 & IN8 & ~IN2 & IN1) &
    (WRES15 <-> ~IN8 | IN9) &
    (WRES4 <->
     WRES5 & WRES1 & IN8 & ~IN3 |
     WRES2 & IN2 & ~IN1 |
     WRES0 & ~IN7 & IN6 & ~IN0) &
    (WRES13 <-> WRES1 & ~IN8 & IN5 & ~IN4 & ~IN3) &
    (WRES11 <-> WRES9 | WRES6 & ~IN8) &
    (WRES8 <-> WRES1 & ~IN5 & IN4 & ~IN3 | WRES2 & ~IN2 & IN1)
    --> (OUT10 <-> WRES7) &
        (OUT9 <-> WRES9 & IN8 | WRES12 | WRES14 & ~IN9 | ~WRES15 & WRES10) &
        (OUT8 <-> WRES9 & ~IN8 | WRES15 & WRES6 | WRES4 & IN9) &
        (OUT7 <-> WRES13 & IN9) &
        (OUT6 <-> WRES13 & ~IN9) &
        (OUT5 <-> WRES14 & IN9) &
        (OUT4 <-> WRES11 & IN9 | WRES12 & IN8) &
        (OUT3 <-> WRES8 & IN9 & ~IN8 | WRES11 & ~IN9 | WRES12 & ~IN8) &
        (OUT2 <-> WRES8 & ~IN9 | WRES10 & IN8) &
        (OUT1 <-> WRES7 & IN8) &
        (OUT0 <-> WRES7 & ~IN8)"
  by (tactic {* svc_tac 1 *})

text {* @{text "fast"} only takes a couple of seconds. *}

lemma sqn_be: "(GE0 <-> IN6 & IN1 | ~IN6 & ~IN1) &
   (GE8 <-> ~IN3 & ~IN1) &
   (GE5 <-> IN6 | IN5) &
   (GE9 <-> ~GE0 | IN2 | ~IN5) &
   (GE1 <-> IN3 | ~IN0) &
   (GE11 <-> GE8 & IN4) &
   (GE3 <-> ~IN4 | ~IN2) &
   (GE34 <-> ~GE5 & IN4 | ~GE9) &
   (GE2 <-> ~IN4 & IN1) &
   (GE14 <-> ~GE1 & ~IN4) &
   (GE19 <-> GE11 & ~GE5) &
   (GE13 <-> GE8 & ~GE3 & ~IN0) &
   (GE20 <-> ~IN5 & IN2 | GE34) &
   (GE12 <-> GE2 & ~IN3) &
   (GE27 <-> GE14 & IN6 | GE19) &
   (GE10 <-> ~IN6 | IN5) &
   (GE28 <-> GE13 | GE20 & ~GE1) &
   (GE6 <-> ~IN5 | IN6) &
   (GE15 <-> GE2 & IN2) &
   (GE29 <-> GE27 | GE12 & GE5) &
   (GE4 <-> IN3 & ~IN0) &
   (GE21 <-> ~GE10 & ~IN1 | ~IN5 & ~IN2) &
   (GE30 <-> GE28 | GE14 & IN2) &
   (GE31 <-> GE29 | GE15 & ~GE6) &
   (GE7 <-> ~IN6 | ~IN5) &
   (GE17 <-> ~GE3 & ~IN1) &
   (GE18 <-> GE4 & IN2) &
   (GE16 <-> GE2 & IN0) &
   (GE23 <-> GE19 | GE9 & ~GE1) &
   (GE32 <-> GE15 & ~IN6 & ~IN0 | GE21 & GE4 & ~IN4 | GE30 | GE31) &
   (GE33 <->
    GE18 & ~GE6 & ~IN4 |
    GE17 & ~GE7 & IN3 |
    ~GE7 & GE4 & ~GE3 |
    GE11 & IN5 & ~IN0) &
   (GE25 <-> GE14 & ~GE6 | GE13 & ~GE5 | GE16 & ~IN5 | GE15 & GE1) &
   (GE26 <->
    GE12 & IN5 & ~IN2 |
    GE10 & GE4 & IN1 |
    GE17 & ~GE6 & IN0 |
    GE2 & ~IN6) &
   (GE24 <-> GE23 | GE16 & GE7) &
   (OUT0 <->
    GE6 & IN4 & ~IN1 & IN0 | GE18 & GE0 & ~IN5 | GE12 & ~GE10 | GE24) &
   (OUT1 <-> GE26 | GE25 | ~GE5 & GE4 & GE3 | GE7 & ~GE1 & IN1) &
   (OUT2 <-> GE33 | GE32) &
   (WRES8 <-> ~IN3 & ~IN1) &
   (WRES0 <-> IN6 & IN1 | ~IN6 & ~IN1) &
   (WRES2 <-> ~IN4 & IN1) &
   (WRES3 <-> ~IN4 | ~IN2) &
   (WRES1 <-> IN3 | ~IN0) &
   (WRES4 <-> IN3 & ~IN0) &
   (WRES5 <-> IN6 | IN5) &
   (WRES11 <-> WRES8 & IN4) &
   (WRES9 <-> ~WRES0 | IN2 | ~IN5) &
   (WRES10 <-> ~IN6 | IN5) &
   (WRES6 <-> ~IN5 | IN6) &
   (WRES7 <-> ~IN6 | ~IN5) &
   (WRES12 <-> WRES2 & ~IN3) &
   (WRES13 <-> WRES8 & ~WRES3 & ~IN0) &
   (WRES14 <-> ~WRES1 & ~IN4) &
   (WRES15 <-> WRES2 & IN2) &
   (WRES17 <-> ~WRES3 & ~IN1) &
   (WRES18 <-> WRES4 & IN2) &
   (WRES19 <-> WRES11 & ~WRES5) &
   (WRES20 <-> ~IN5 & IN2 | ~WRES5 & IN4 | ~WRES9) &
   (WRES21 <-> ~WRES10 & ~IN1 | ~IN5 & ~IN2) &
   (WRES16 <-> WRES2 & IN0)
   --> (OUT2 <->
        WRES11 & IN5 & ~IN0 |
        ~WRES7 & WRES4 & ~WRES3 |
        WRES12 & WRES5 |
        WRES13 |
        WRES14 & IN2 |
        WRES14 & IN6 |
        WRES15 & ~WRES6 |
        WRES15 & ~IN6 & ~IN0 |
        WRES17 & ~WRES7 & IN3 |
        WRES18 & ~WRES6 & ~IN4 |
        WRES20 & ~WRES1 |
        WRES21 & WRES4 & ~IN4 |
        WRES19) &
       (OUT1 <->
        ~WRES5 & WRES4 & WRES3 |
        WRES7 & ~WRES1 & IN1 |
        WRES2 & ~IN6 |
        WRES10 & WRES4 & IN1 |
        WRES12 & IN5 & ~IN2 |
        WRES13 & ~WRES5 |
        WRES14 & ~WRES6 |
        WRES15 & WRES1 |
        WRES16 & ~IN5 |
        WRES17 & ~WRES6 & IN0) &
       (OUT0 <->
        WRES6 & IN4 & ~IN1 & IN0 |
        WRES9 & ~WRES1 |
        WRES12 & ~WRES10 |
        WRES16 & WRES7 |
        WRES18 & WRES0 & ~IN5 |
        WRES19)"
  by (tactic {* svc_tac 1 *})


subsection {* Linear arithmetic *}

lemma "x ~= 14 & x ~= 13 & x ~= 12 & x ~= 11 & x ~= 10 & x ~= 9 &
      x ~= 8 & x ~= 7 & x ~= 6 & x ~= 5 & x ~= 4 & x ~= 3 &
      x ~= 2 & x ~= 1 & 0 < x & x < 16 --> 15 = (x::int)"
  by (tactic {* svc_tac 1 *})

text {*merely to test polarity handling in the presence of biconditionals*}
lemma "(x < (y::int)) = (x+1 <= y)"
  by (tactic {* svc_tac 1 *})


subsection {* Natural number examples requiring implicit "non-negative" assumptions *}

lemma "(3::nat)*a <= 2 + 4*b + 6*c  & 11 <= 2*a + b + 2*c &
      a + 3*b <= 5 + 2*c  --> 2 + 3*b <= 2*a + 6*c"
  by (tactic {* svc_tac 1 *})

lemma "(n::nat) < 2 ==> (n = 0) | (n = 1)"
  by (tactic {* svc_tac 1 *})

end