(* Title: CCL/Type.thy
Author: Martin Coen
Copyright 1993 University of Cambridge
*)
section {* Types in CCL are defined as sets of terms *}
theory Type
imports Term
begin
consts
Subtype :: "['a set, 'a \<Rightarrow> o] \<Rightarrow> 'a set"
Bool :: "i set"
Unit :: "i set"
Plus :: "[i set, i set] \<Rightarrow> i set" (infixr "+" 55)
Pi :: "[i set, i \<Rightarrow> i set] \<Rightarrow> i set"
Sigma :: "[i set, i \<Rightarrow> i set] \<Rightarrow> i set"
Nat :: "i set"
List :: "i set \<Rightarrow> i set"
Lists :: "i set \<Rightarrow> i set"
ILists :: "i set \<Rightarrow> i set"
TAll :: "(i set \<Rightarrow> i set) \<Rightarrow> i set" (binder "TALL " 55)
TEx :: "(i set \<Rightarrow> i set) \<Rightarrow> i set" (binder "TEX " 55)
Lift :: "i set \<Rightarrow> i set" ("(3[_])")
SPLIT :: "[i, [i, i] \<Rightarrow> i set] \<Rightarrow> i set"
syntax
"_Pi" :: "[idt, i set, i set] \<Rightarrow> i set" ("(3PROD _:_./ _)"
[0,0,60] 60)
"_Sigma" :: "[idt, i set, i set] \<Rightarrow> i set" ("(3SUM _:_./ _)"
[0,0,60] 60)
"_arrow" :: "[i set, i set] \<Rightarrow> i set" ("(_ ->/ _)" [54, 53] 53)
"_star" :: "[i set, i set] \<Rightarrow> i set" ("(_ */ _)" [56, 55] 55)
"_Subtype" :: "[idt, 'a set, o] \<Rightarrow> 'a set" ("(1{_: _ ./ _})")
translations
"PROD x:A. B" => "CONST Pi(A, \<lambda>x. B)"
"A -> B" => "CONST Pi(A, \<lambda>_. B)"
"SUM x:A. B" => "CONST Sigma(A, \<lambda>x. B)"
"A * B" => "CONST Sigma(A, \<lambda>_. B)"
"{x: A. B}" == "CONST Subtype(A, \<lambda>x. B)"
print_translation {*
[(@{const_syntax Pi},
fn _ => Syntax_Trans.dependent_tr' (@{syntax_const "_Pi"}, @{syntax_const "_arrow"})),
(@{const_syntax Sigma},
fn _ => Syntax_Trans.dependent_tr' (@{syntax_const "_Sigma"}, @{syntax_const "_star"}))]
*}
defs
Subtype_def: "{x:A. P(x)} == {x. x:A \<and> P(x)}"
Unit_def: "Unit == {x. x=one}"
Bool_def: "Bool == {x. x=true | x=false}"
Plus_def: "A+B == {x. (EX a:A. x=inl(a)) | (EX b:B. x=inr(b))}"
Pi_def: "Pi(A,B) == {x. EX b. x=lam x. b(x) \<and> (ALL x:A. b(x):B(x))}"
Sigma_def: "Sigma(A,B) == {x. EX a:A. EX b:B(a).x=<a,b>}"
Nat_def: "Nat == lfp(\<lambda>X. Unit + X)"
List_def: "List(A) == lfp(\<lambda>X. Unit + A*X)"
Lists_def: "Lists(A) == gfp(\<lambda>X. Unit + A*X)"
ILists_def: "ILists(A) == gfp(\<lambda>X.{} + A*X)"
Tall_def: "TALL X. B(X) == Inter({X. EX Y. X=B(Y)})"
Tex_def: "TEX X. B(X) == Union({X. EX Y. X=B(Y)})"
Lift_def: "[A] == A Un {bot}"
SPLIT_def: "SPLIT(p,B) == Union({A. EX x y. p=<x,y> \<and> A=B(x,y)})"
lemmas simp_type_defs =
Subtype_def Unit_def Bool_def Plus_def Sigma_def Pi_def Lift_def Tall_def Tex_def
and ind_type_defs = Nat_def List_def
and simp_data_defs = one_def inl_def inr_def
and ind_data_defs = zero_def succ_def nil_def cons_def
lemma subsetXH: "A <= B \<longleftrightarrow> (ALL x. x:A \<longrightarrow> x:B)"
by blast
subsection {* Exhaustion Rules *}
lemma EmptyXH: "\<And>a. a : {} \<longleftrightarrow> False"
and SubtypeXH: "\<And>a A P. a : {x:A. P(x)} \<longleftrightarrow> (a:A \<and> P(a))"
and UnitXH: "\<And>a. a : Unit \<longleftrightarrow> a=one"
and BoolXH: "\<And>a. a : Bool \<longleftrightarrow> a=true | a=false"
and PlusXH: "\<And>a A B. a : A+B \<longleftrightarrow> (EX x:A. a=inl(x)) | (EX x:B. a=inr(x))"
and PiXH: "\<And>a A B. a : PROD x:A. B(x) \<longleftrightarrow> (EX b. a=lam x. b(x) \<and> (ALL x:A. b(x):B(x)))"
and SgXH: "\<And>a A B. a : SUM x:A. B(x) \<longleftrightarrow> (EX x:A. EX y:B(x).a=<x,y>)"
unfolding simp_type_defs by blast+
lemmas XHs = EmptyXH SubtypeXH UnitXH BoolXH PlusXH PiXH SgXH
lemma LiftXH: "a : [A] \<longleftrightarrow> (a=bot | a:A)"
and TallXH: "a : TALL X. B(X) \<longleftrightarrow> (ALL X. a:B(X))"
and TexXH: "a : TEX X. B(X) \<longleftrightarrow> (EX X. a:B(X))"
unfolding simp_type_defs by blast+
ML {* ML_Thms.bind_thms ("case_rls", XH_to_Es @{thms XHs}) *}
subsection {* Canonical Type Rules *}
lemma oneT: "one : Unit"
and trueT: "true : Bool"
and falseT: "false : Bool"
and lamT: "\<And>b B. (\<And>x. x:A \<Longrightarrow> b(x):B(x)) \<Longrightarrow> lam x. b(x) : Pi(A,B)"
and pairT: "\<And>b B. \<lbrakk>a:A; b:B(a)\<rbrakk> \<Longrightarrow> <a,b>:Sigma(A,B)"
and inlT: "a:A \<Longrightarrow> inl(a) : A+B"
and inrT: "b:B \<Longrightarrow> inr(b) : A+B"
by (blast intro: XHs [THEN iffD2])+
lemmas canTs = oneT trueT falseT pairT lamT inlT inrT
subsection {* Non-Canonical Type Rules *}
lemma lem: "\<lbrakk>a:B(u); u = v\<rbrakk> \<Longrightarrow> a : B(v)"
by blast
ML {*
fun mk_ncanT_tac top_crls crls =
SUBPROOF (fn {context = ctxt, prems = major :: prems, ...} =>
resolve_tac ([major] RL top_crls) 1 THEN
REPEAT_SOME (eresolve_tac (crls @ [@{thm exE}, @{thm bexE}, @{thm conjE}, @{thm disjE}])) THEN
ALLGOALS (asm_simp_tac ctxt) THEN
ALLGOALS (ares_tac (prems RL [@{thm lem}]) ORELSE' etac @{thm bspec}) THEN
safe_tac (ctxt addSIs prems))
*}
method_setup ncanT = {*
Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms case_rls} @{thms case_rls})
*}
lemma ifT: "\<lbrakk>b:Bool; b=true \<Longrightarrow> t:A(true); b=false \<Longrightarrow> u:A(false)\<rbrakk> \<Longrightarrow> if b then t else u : A(b)"
by ncanT
lemma applyT: "\<lbrakk>f : Pi(A,B); a:A\<rbrakk> \<Longrightarrow> f ` a : B(a)"
by ncanT
lemma splitT: "\<lbrakk>p:Sigma(A,B); \<And>x y. \<lbrakk>x:A; y:B(x); p=<x,y>\<rbrakk> \<Longrightarrow> c(x,y):C(<x,y>)\<rbrakk> \<Longrightarrow> split(p,c):C(p)"
by ncanT
lemma whenT:
"\<lbrakk>p:A+B;
\<And>x. \<lbrakk>x:A; p=inl(x)\<rbrakk> \<Longrightarrow> a(x):C(inl(x));
\<And>y. \<lbrakk>y:B; p=inr(y)\<rbrakk> \<Longrightarrow> b(y):C(inr(y))\<rbrakk> \<Longrightarrow> when(p,a,b) : C(p)"
by ncanT
lemmas ncanTs = ifT applyT splitT whenT
subsection {* Subtypes *}
lemma SubtypeD1: "a : Subtype(A, P) \<Longrightarrow> a : A"
and SubtypeD2: "a : Subtype(A, P) \<Longrightarrow> P(a)"
by (simp_all add: SubtypeXH)
lemma SubtypeI: "\<lbrakk>a:A; P(a)\<rbrakk> \<Longrightarrow> a : {x:A. P(x)}"
by (simp add: SubtypeXH)
lemma SubtypeE: "\<lbrakk>a : {x:A. P(x)}; \<lbrakk>a:A; P(a)\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
by (simp add: SubtypeXH)
subsection {* Monotonicity *}
lemma idM: "mono (\<lambda>X. X)"
apply (rule monoI)
apply assumption
done
lemma constM: "mono(\<lambda>X. A)"
apply (rule monoI)
apply (rule subset_refl)
done
lemma "mono(\<lambda>X. A(X)) \<Longrightarrow> mono(\<lambda>X.[A(X)])"
apply (rule subsetI [THEN monoI])
apply (drule LiftXH [THEN iffD1])
apply (erule disjE)
apply (erule disjI1 [THEN LiftXH [THEN iffD2]])
apply (rule disjI2 [THEN LiftXH [THEN iffD2]])
apply (drule (1) monoD)
apply blast
done
lemma SgM:
"\<lbrakk>mono(\<lambda>X. A(X)); \<And>x X. x:A(X) \<Longrightarrow> mono(\<lambda>X. B(X,x))\<rbrakk> \<Longrightarrow>
mono(\<lambda>X. Sigma(A(X),B(X)))"
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls
dest!: monoD [THEN subsetD])
lemma PiM: "(\<And>x. x:A \<Longrightarrow> mono(\<lambda>X. B(X,x))) \<Longrightarrow> mono(\<lambda>X. Pi(A,B(X)))"
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls
dest!: monoD [THEN subsetD])
lemma PlusM: "\<lbrakk>mono(\<lambda>X. A(X)); mono(\<lambda>X. B(X))\<rbrakk> \<Longrightarrow> mono(\<lambda>X. A(X)+B(X))"
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls
dest!: monoD [THEN subsetD])
subsection {* Recursive types *}
subsubsection {* Conversion Rules for Fixed Points via monotonicity and Tarski *}
lemma NatM: "mono(\<lambda>X. Unit+X)"
apply (rule PlusM constM idM)+
done
lemma def_NatB: "Nat = Unit + Nat"
apply (rule def_lfp_Tarski [OF Nat_def])
apply (rule NatM)
done
lemma ListM: "mono(\<lambda>X.(Unit+Sigma(A,\<lambda>y. X)))"
apply (rule PlusM SgM constM idM)+
done
lemma def_ListB: "List(A) = Unit + A * List(A)"
apply (rule def_lfp_Tarski [OF List_def])
apply (rule ListM)
done
lemma def_ListsB: "Lists(A) = Unit + A * Lists(A)"
apply (rule def_gfp_Tarski [OF Lists_def])
apply (rule ListM)
done
lemma IListsM: "mono(\<lambda>X.({} + Sigma(A,\<lambda>y. X)))"
apply (rule PlusM SgM constM idM)+
done
lemma def_IListsB: "ILists(A) = {} + A * ILists(A)"
apply (rule def_gfp_Tarski [OF ILists_def])
apply (rule IListsM)
done
lemmas ind_type_eqs = def_NatB def_ListB def_ListsB def_IListsB
subsection {* Exhaustion Rules *}
lemma NatXH: "a : Nat \<longleftrightarrow> (a=zero | (EX x:Nat. a=succ(x)))"
and ListXH: "a : List(A) \<longleftrightarrow> (a=[] | (EX x:A. EX xs:List(A).a=x$xs))"
and ListsXH: "a : Lists(A) \<longleftrightarrow> (a=[] | (EX x:A. EX xs:Lists(A).a=x$xs))"
and IListsXH: "a : ILists(A) \<longleftrightarrow> (EX x:A. EX xs:ILists(A).a=x$xs)"
unfolding ind_data_defs
by (rule ind_type_eqs [THEN XHlemma1], blast intro!: canTs elim!: case_rls)+
lemmas iXHs = NatXH ListXH
ML {* ML_Thms.bind_thms ("icase_rls", XH_to_Es @{thms iXHs}) *}
subsection {* Type Rules *}
lemma zeroT: "zero : Nat"
and succT: "n:Nat \<Longrightarrow> succ(n) : Nat"
and nilT: "[] : List(A)"
and consT: "\<lbrakk>h:A; t:List(A)\<rbrakk> \<Longrightarrow> h$t : List(A)"
by (blast intro: iXHs [THEN iffD2])+
lemmas icanTs = zeroT succT nilT consT
method_setup incanT = {*
Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms icase_rls} @{thms case_rls})
*}
lemma ncaseT: "\<lbrakk>n:Nat; n=zero \<Longrightarrow> b:C(zero); \<And>x. \<lbrakk>x:Nat; n=succ(x)\<rbrakk> \<Longrightarrow> c(x):C(succ(x))\<rbrakk>
\<Longrightarrow> ncase(n,b,c) : C(n)"
by incanT
lemma lcaseT: "\<lbrakk>l:List(A); l = [] \<Longrightarrow> b:C([]); \<And>h t. \<lbrakk>h:A; t:List(A); l=h$t\<rbrakk> \<Longrightarrow> c(h,t):C(h$t)\<rbrakk>
\<Longrightarrow> lcase(l,b,c) : C(l)"
by incanT
lemmas incanTs = ncaseT lcaseT
subsection {* Induction Rules *}
lemmas ind_Ms = NatM ListM
lemma Nat_ind: "\<lbrakk>n:Nat; P(zero); \<And>x. \<lbrakk>x:Nat; P(x)\<rbrakk> \<Longrightarrow> P(succ(x))\<rbrakk> \<Longrightarrow> P(n)"
apply (unfold ind_data_defs)
apply (erule def_induct [OF Nat_def _ NatM])
apply (blast intro: canTs elim!: case_rls)
done
lemma List_ind: "\<lbrakk>l:List(A); P([]); \<And>x xs. \<lbrakk>x:A; xs:List(A); P(xs)\<rbrakk> \<Longrightarrow> P(x$xs)\<rbrakk> \<Longrightarrow> P(l)"
apply (unfold ind_data_defs)
apply (erule def_induct [OF List_def _ ListM])
apply (blast intro: canTs elim!: case_rls)
done
lemmas inds = Nat_ind List_ind
subsection {* Primitive Recursive Rules *}
lemma nrecT: "\<lbrakk>n:Nat; b:C(zero); \<And>x g. \<lbrakk>x:Nat; g:C(x)\<rbrakk> \<Longrightarrow> c(x,g):C(succ(x))\<rbrakk>
\<Longrightarrow> nrec(n,b,c) : C(n)"
by (erule Nat_ind) auto
lemma lrecT: "\<lbrakk>l:List(A); b:C([]); \<And>x xs g. \<lbrakk>x:A; xs:List(A); g:C(xs)\<rbrakk> \<Longrightarrow> c(x,xs,g):C(x$xs) \<rbrakk>
\<Longrightarrow> lrec(l,b,c) : C(l)"
by (erule List_ind) auto
lemmas precTs = nrecT lrecT
subsection {* Theorem proving *}
lemma SgE2: "\<lbrakk><a,b> : Sigma(A,B); \<lbrakk>a:A; b:B(a)\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
unfolding SgXH by blast
(* General theorem proving ignores non-canonical term-formers, *)
(* - intro rules are type rules for canonical terms *)
(* - elim rules are case rules (no non-canonical terms appear) *)
ML {* ML_Thms.bind_thms ("XHEs", XH_to_Es @{thms XHs}) *}
lemmas [intro!] = SubtypeI canTs icanTs
and [elim!] = SubtypeE XHEs
subsection {* Infinite Data Types *}
lemma lfp_subset_gfp: "mono(f) \<Longrightarrow> lfp(f) <= gfp(f)"
apply (rule lfp_lowerbound [THEN subset_trans])
apply (erule gfp_lemma3)
apply (rule subset_refl)
done
lemma gfpI:
assumes "a:A"
and "\<And>x X. \<lbrakk>x:A; ALL y:A. t(y):X\<rbrakk> \<Longrightarrow> t(x) : B(X)"
shows "t(a) : gfp(B)"
apply (rule coinduct)
apply (rule_tac P = "\<lambda>x. EX y:A. x=t (y)" in CollectI)
apply (blast intro!: assms)+
done
lemma def_gfpI: "\<lbrakk>C == gfp(B); a:A; \<And>x X. \<lbrakk>x:A; ALL y:A. t(y):X\<rbrakk> \<Longrightarrow> t(x) : B(X)\<rbrakk> \<Longrightarrow> t(a) : C"
apply unfold
apply (erule gfpI)
apply blast
done
(* EG *)
lemma "letrec g x be zero$g(x) in g(bot) : Lists(Nat)"
apply (rule refl [THEN UnitXH [THEN iffD2], THEN Lists_def [THEN def_gfpI]])
apply (subst letrecB)
apply (unfold cons_def)
apply blast
done
subsection {* Lemmas and tactics for using the rule @{text
"coinduct3"} on @{text "[="} and @{text "="} *}
lemma lfpI: "\<lbrakk>mono(f); a : f(lfp(f))\<rbrakk> \<Longrightarrow> a : lfp(f)"
apply (erule lfp_Tarski [THEN ssubst])
apply assumption
done
lemma ssubst_single: "\<lbrakk>a = a'; a' : A\<rbrakk> \<Longrightarrow> a : A"
by simp
lemma ssubst_pair: "\<lbrakk>a = a'; b = b'; <a',b'> : A\<rbrakk> \<Longrightarrow> <a,b> : A"
by simp
ML {*
val coinduct3_tac = SUBPROOF (fn {context = ctxt, prems = mono :: prems, ...} =>
fast_tac (ctxt addIs (mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}) :: prems) 1);
*}
method_setup coinduct3 = {* Scan.succeed (SIMPLE_METHOD' o coinduct3_tac) *}
lemma ci3_RI: "\<lbrakk>mono(Agen); a : R\<rbrakk> \<Longrightarrow> a : lfp(\<lambda>x. Agen(x) Un R Un A)"
by coinduct3
lemma ci3_AgenI: "\<lbrakk>mono(Agen); a : Agen(lfp(\<lambda>x. Agen(x) Un R Un A))\<rbrakk> \<Longrightarrow>
a : lfp(\<lambda>x. Agen(x) Un R Un A)"
by coinduct3
lemma ci3_AI: "\<lbrakk>mono(Agen); a : A\<rbrakk> \<Longrightarrow> a : lfp(\<lambda>x. Agen(x) Un R Un A)"
by coinduct3
ML {*
fun genIs_tac ctxt genXH gen_mono =
rtac (genXH RS @{thm iffD2}) THEN'
simp_tac ctxt THEN'
TRY o fast_tac
(ctxt addIs [genXH RS @{thm iffD2}, gen_mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}])
*}
method_setup genIs = {*
Attrib.thm -- Attrib.thm >>
(fn (genXH, gen_mono) => fn ctxt => SIMPLE_METHOD' (genIs_tac ctxt genXH gen_mono))
*}
subsection {* POgen *}
lemma PO_refl: "<a,a> : PO"
by (rule po_refl [THEN PO_iff [THEN iffD1]])
lemma POgenIs:
"<true,true> : POgen(R)"
"<false,false> : POgen(R)"
"\<lbrakk><a,a'> : R; <b,b'> : R\<rbrakk> \<Longrightarrow> <<a,b>,<a',b'>> : POgen(R)"
"\<And>b b'. (\<And>x. <b(x),b'(x)> : R) \<Longrightarrow> <lam x. b(x),lam x. b'(x)> : POgen(R)"
"<one,one> : POgen(R)"
"<a,a'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow>
<inl(a),inl(a')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"
"<b,b'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow>
<inr(b),inr(b')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"
"<zero,zero> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"
"<n,n'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow>
<succ(n),succ(n')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"
"<[],[]> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"
"\<lbrakk><h,h'> : lfp(\<lambda>x. POgen(x) Un R Un PO); <t,t'> : lfp(\<lambda>x. POgen(x) Un R Un PO)\<rbrakk>
\<Longrightarrow> <h$t,h'$t'> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"
unfolding data_defs by (genIs POgenXH POgen_mono)+
ML {*
fun POgen_tac ctxt (rla, rlb) i =
SELECT_GOAL (safe_tac ctxt) i THEN
rtac (rlb RS (rla RS @{thm ssubst_pair})) i THEN
(REPEAT (resolve_tac
(@{thms POgenIs} @ [@{thm PO_refl} RS (@{thm POgen_mono} RS @{thm ci3_AI})] @
(@{thms POgenIs} RL [@{thm POgen_mono} RS @{thm ci3_AgenI}]) @
[@{thm POgen_mono} RS @{thm ci3_RI}]) i))
*}
subsection {* EQgen *}
lemma EQ_refl: "<a,a> : EQ"
by (rule refl [THEN EQ_iff [THEN iffD1]])
lemma EQgenIs:
"<true,true> : EQgen(R)"
"<false,false> : EQgen(R)"
"\<lbrakk><a,a'> : R; <b,b'> : R\<rbrakk> \<Longrightarrow> <<a,b>,<a',b'>> : EQgen(R)"
"\<And>b b'. (\<And>x. <b(x),b'(x)> : R) \<Longrightarrow> <lam x. b(x),lam x. b'(x)> : EQgen(R)"
"<one,one> : EQgen(R)"
"<a,a'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow>
<inl(a),inl(a')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"
"<b,b'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow>
<inr(b),inr(b')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"
"<zero,zero> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"
"<n,n'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow>
<succ(n),succ(n')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"
"<[],[]> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"
"\<lbrakk><h,h'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ); <t,t'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ)\<rbrakk>
\<Longrightarrow> <h$t,h'$t'> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"
unfolding data_defs by (genIs EQgenXH EQgen_mono)+
ML {*
fun EQgen_raw_tac i =
(REPEAT (resolve_tac (@{thms EQgenIs} @
[@{thm EQ_refl} RS (@{thm EQgen_mono} RS @{thm ci3_AI})] @
(@{thms EQgenIs} RL [@{thm EQgen_mono} RS @{thm ci3_AgenI}]) @
[@{thm EQgen_mono} RS @{thm ci3_RI}]) i))
(* Goals of the form R <= EQgen(R) - rewrite elements <a,b> : EQgen(R) using rews and *)
(* then reduce this to a goal <a',b'> : R (hopefully?) *)
(* rews are rewrite rules that would cause looping in the simpifier *)
fun EQgen_tac ctxt rews i =
SELECT_GOAL
(TRY (safe_tac ctxt) THEN
resolve_tac ((rews @ [@{thm refl}]) RL ((rews @ [@{thm refl}]) RL [@{thm ssubst_pair}])) i THEN
ALLGOALS (simp_tac ctxt) THEN
ALLGOALS EQgen_raw_tac) i
*}
method_setup EQgen = {*
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (EQgen_tac ctxt ths))
*}
end